

MANAV RACHNA UNIVERSITY

END SEMESTER EXAMINATION

SCHOOL OF SCIENCES

DECEMBER - 2023

(3rd/5th)

INDEX to PYQs (Acc. To PDF)

S.NO.	Course Name	Branch	Sem	Page no (of PDF)
1	Inorganic chemistry II	BSc (Hons.) Chemistry	3	5
2	Physical chemistry II	BSc (Hons.) Chemistry	3	7
3	Organic chemistry II	BSc (Hons.) Chemistry	3	9
4	Introduction to finance	BSc (Hons.) Chemistry, BSc Matematics, BTech ME	3/7	11
5	Physical chemistry IV	BSc (Hons.) Chemistry	5	13
6	Biomolecules and natural products	BSc (Hons.) Chemistry	5	15
7	Analytical chemistry & spectroscopy	BSc (Hons.) Chemistry	5	17
8	Chemistry in Agriculture	BSc (Hons.) Chemistry	5	19
9	Real analysis	BSc (Hons.) Mathematics	3	20
10	Geo. two and three dimensions	BSc (Hons.) Mathematics	3	22
11	Group theory	BSc (Hons.) Mathematics	3	24
12	Partial difference equation	BSc (Hons.) Mathematics	3	26
13	Statistical inferences	BSc (Hons.) Mathematics	5	28
14	Linear algebra	BSc (Hons.) Mathematics	5	31
15	Numerical analysis	BSc (Hons.) Mathematics	5	33
16	Metric spaces	BSc (Hons.) Mathematics	5	35
17	Quantum mechanics	BSc (Hons.) Physics	3	37
18	Mathematical Physics	BSc (Hons.) Physics	3	38
19	Electromagnetic theory	BSc (Hons.) Physics	3	40
20	Statistical Physics	BSc (Hons.) Physics	5	42
21	Modern Physics	BSc (Hons.) Physics	5	44
22	Condensed matter Physics I	BSc (Hons.) Physics	5	46
23	Digital Electronics	BSc (Hons.) Physics	5	48
24	Organic chemistry I	MSc Chemistry	1	50
25	Inorganic chemistry I	MSc Chemistry	1	53
26	Inorganic chemistry I	MSc Chemistry	1	55
27	Physical chemistry I	MSc Chemistry	1	57

28	Analytical chemistry	MSc Chemistry	1	59
29	Symmetry and group theory	MSc Chemistry	3	61
30	Inorganic special I :Organometallic Chemistry of Transition metals & bio inorganic Chemistry	MSc Chemistry	3	64
31	Organic special I :Statistical Stereochemistry & Asymmetric Synthesis	MSc Chemistry	3	66
32	Photochemistry & Pericyclic Reaction	MSc Chemistry	3	69
33	Supramolecular Chemistry & metal cluster	MSc Chemistry	3	75
34	Inorganic and Biological Catalysis	MSc Chemistry (Inorganic sp.)	3	77
35	Modern organic synthesis techniques	MSc Chemistry (Organic sp.)	3	79
36	Differential equations	MSc Mathematics	1	81
37	Quantum mechanics I	MSc Physics	1	83
38	Measure theory	MSc Mathematics	1	86
39	Topology I	MSc Mathematics	1	88
40	Mathematical Statistics	MSc Mathematics	1	90
41	Abstract algebra	MSc Mathematics	1	94
42	Graph theory	MSc Mathematics	3	96
43	Integral equation and calculus of variations	MSc Mathematics	3	98
44	Fluid Mechanics	MSc Mathematics	3	100
45	Pedagogical skill	MSc Mathematics/ M.Tech ME	3	102
46	Operation Research	MSc Mathematics	3	104
47	Classical mechanics	MSc Physics	1	108
48	Physics of Electronic devices	MSc Physics	1	110
49	Mathematical Physics	MSc Physics	1	112
50	Computational methods and programming	MSc Physics	1	114
51	Nuclear and particle Physics	MSc Physics	3	116
52	Electrodynamics and plasma Physics	MSc Physics	3	117
53	Advace solid state Physics	MSc Physics	3	119
54	Synthesis & characterization technique	MSc Physics	3	121

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	l III .	DATE OF EXAM	08.12.2023 (II
COURSE NAME ·	INORGANIC CHEMISTRY II	COURSE CODE	CHH202B
PROGRAM	B.Sc.(Hons.) Chemistry	CREDITS	3
TIME DURATION	180min	MAX. MARKS	100
NAME OF FACULTY	Dr. Roopa Rani	NAME OF COURSE COORDINATOR	Dr. Roopa Rani

Note: Attempt all questions

).NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	P I
		a) Differentiate among electrolytic refining and electrolytic reduction.	3	CO1	BT4	
		b) Write the principle of zone refining.	2	CO1	BT2	
PART-A	Q1	c) Refer to the diagram below-	3	CO1	BT2	
		The Y-axis and X-axis in the graph above represents and, respectively. Explain its uses.	(d) (4)			
		d) Define the following terms – i. Gangue ii. Minerals iii. Ores	3	CO1	BT1	

To-A					
		e) What do you mean by the term standard electrode potential? How does it compares the reduction potential of a group of elements?	3	CO1	BT1
		a) Explain the stability of alkali metals with respect to I. Sulphates II. Carbonates III. Nitrates	3	CO2	вт3
		b) S-block elements has complex forming tendency. Explain the statement using an example.	4	CO2	BT4
PART-B		c) Compare the properties of alkali and alkaline earth metals with respect to – I. Flame color II. Reducing property III. Ionization energy	3	CO2	BT5
		d) Explain the reason for the anomalous behaviour of the first elements of I and II group.	3	CO2	BT2
,	Q2	e) What do you mean by amphoteric oxides? Which elements form this type of oxides among the s block elements?	2	CO2	BT3
		a) Write short notes on the following I. Diborane II. Electronegativity trend for p-block elements III. Diagonal relationship between B and Si	3 3 2	CO3	BT2
PART-C	Q3	b) Explain the phenomenon of catenation among group 14 elements. Elaborate the allotropes of carbon in detail	4+4+4	CO3-	BT4
C		c) Conclude the term "Inorganic benzene". Explain its structure, bonding and properties.	8	CO3	BT5
		d) Examine the properties and structure of silicones. Give its uses in details	7	CO3	BT5
	Q4	a) Discuss the structure and bonding in oxoacids of chlorine and phosphorus. Also arrange them in increasing order of their acidic strength.	6+4	CO4	BT6
PA		b) Compare the structure and properties of different interhalogen compounds.	5+5	CO4	BT5
PART-D		c) Write short notes on the following I. Clathrate compounds II. Halides of Silicon III. Xenon Fluorides	3 3 4	CO4	BT2
		d) Explain the structure, bonding and properties of phosphonitrilic chloride in details.	5	CO4	BT4

END *

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES "End Semester Examination Dec-2023"

SEMESTER	IIIrd	DATE OF EXAM	11.12.2023
SUBJECT NAME	PHYSICAL CHEMISTRY-II	SUBJECT CODE	CHH201B-T
BRANCH	Chemistry	SESSION	\mathcal{I}
TIME	8:30 1011:30	Oaw MAX. MARKS	100
PROGRAM	B.Sc.(H)	CREDITS	4
NAME OF FACULTY	Dr. Priti Gupta	NAME OF COURSE COORDINATOR	Dr. Priti Gupta

Note: All questions are compulsory.

lote	: All quest	tions are compulsory.			1
Q.N	О.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
	1(A)	How are work function and free energy related?	5	CO1	BT1
PART-A	1(B)	Why is the value of Cp and Cv is always greater than that of Cv? How are they related?	5	COL	BT1
	1(C)	Compare Reversible and irreversible processes with example.	5	COI	BT2
	Q2(A)	Derive Gibb's Helmholtz Equation in terms of Internal energy and work function.	5	CO2	BT3
PART-B	2(B)	Define the following terms: a) Inversion temperature b) Residual entropy	6	CO2	BTI
~	2(C)	Justify that "All spontaneous processes lead to increase the entropy of the system"	·4	CO2	BT4
	Q3(A)	Give reason why addition of non-volatile solute lowers the freezing point and elevates the boiling point of a solvent.	4	CO3	BT3
PART-C	3(B)	Derive an expression for the elevation in boiling point of a liquid when a solute is dissolved in and explain how the molecular mass of solute can be evaluated by the Boiling point method.	8	CO3	BT4
	3(C)	Compare Reverse Osmosis process with Osmosis. How Reverse osmosis is used in Desalination of sea water	7	CO3	BT2

	3(D)	In an experiment air was drawn successfully through a solution of sugar (0.03889 Kg per 0.1 Kg water) and distilled water, and then through anhydrous calcium chloride. It was found that the water lost was $0.921*10^{-4}$ Kg and calcium chloride tubes gained $0.5163*10^{-2}$ Kg. find the molecular mass of sugar(Molar mass of $H_20 = 0.018$ kg).	8	CO3	BT4
	3(E)	How Landsberger-Walker method is useful for the measurement of elevation in boiling point?	8	CO3	BTI
	4(A)	Derive the rate equation for first order reaction and show that Half-life is independent of initial concentration.	4+4	CO4	BT3
	4(B)	50% of the first order reaction is completed in 23 minutes. Calculate the time required to complete 90% of the reaction.	6	CO4	BT4
PART-D	4(c)	Derive Arrhenius equation and discuss how it is useful to calculate the energy of activation?	6	CO4	BT4
	4(D)	Explain Integrated rate equation and Graphical methods for determining the Order of reaction	8	CO4	вт2
	4(E)	Show that for a first order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.	7	CO4	ВТ3

MANAY RACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination,Dec-2023"

SEMESTER	m	DATE OF EXAM/SESSION	19/12/2-23
COURSE NAME	ORGANIC CHEMISTRY-II	COURSE CODE	СНН203В-Т
PROGRAM	B.Sc. (Hons.) CHEMISTRY	CREDITS	4
TIME DURATION	03:00 hrs	MAX. MARKS	100
NAME OF FACULTY	ANJU SHARMA	NAME OF COURSE COORDINATOR	ANJU SHARMA

15 33 33					15		
Q.NO.			CO ADDRESSED	BLOOM'S LEVEL	PI		
1 44	1	Write classification of Isomerism. Explain all types with example.	5	CO1	BT2		
PART-A	2	What are haloalkanes and haloarenes. Explain with examples. Write the order of melting point of:- CH ₃ I, CH ₃ Br, CH ₃ Cl, CH ₃ F, CH ₄ and give reason.	5	CO1	BT2		
# 1 A	3	Differentiate SN ¹ and SN ² Reaction . Draw Energy profile diagram for both mechanism.	5	CO1	BT4		
	4	Deduce IUPAC name a) Cl-CH ₃ -CH ₂ -CH ₂ -OH b) CH ₃ -CH=CH-C(CH ₃) ₂ -CH ₂ -OH	3	CO2	BT2		
PART-B	5	Spell out the order of boiling point for CH ₃ -C(CH ₃) ₂ -OH, CH ₃ -CH ₂ (OH)-CH ₂ -CH ₃ , CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH Also give reason for same.	3	C02	BT3	S	
	6	Elaborate the reaction and mechanism of conversion of tert. butyl alcohol to tert. butyl chloride	4	CO2	BT4		

RT5	
B13	-
4	
RT3	
B13	+
DTM	
B14	+
	5
BT5	
B13	+
BT2	
27	
BT3	
D.W.4	
B14	
DTE	
DIS	
BT3	
	BT5 BT3 BT4 BT5 BT7 BT7 BT7 BT7 BT7

END

MANAV RACHNA UNIVERSITY SCHOOL OF MANAGEMENT & COMMERCE DEPARTMENT OF MANAGEMENT & COMMERCE

"End Semester Examination, Dec-2023"

SEMESTER	3 rd / 7th INTRODUCTION TO	DATE OF EXAM COURSE CODE	22.12.2023 ()) MCH232
COURSE NAME	FINANCE	CREDITS	2
PROGRAM	B.Sc. Mathematics3rd/ B.Sc. Chemistry3rd/ B.Tech Mech. SMA (7 th	CREDITA	
TIME	Sem) 1.5 HOURS (12:30 - 02PM)	MAX. MARKS	50
DURATION NAME OF FACULTY	DR POOJA KAPOOR	NAME OF COURSE COORDINATOR	DR POOJA KAPOO

Note: All questions are compulsory. Each question carry 10 marks each.

010.120. 1					LJ.		-
		UESTIONS		MAR KS	CO ADD RES SED	BLOOM' S LEVEL	P
11 - allad	are the three roles of financial Intermedia Shares and preferen	ries! Also, but a	liaries? Why banks are ne difference between	(05+0 5)	CO1	BT2	
Hi-So secon	ounds, a small audio end year of trading. Programed. It is felt by the dity problems in the news: As at 31 December: Stock	ofits are up, but the	has just completed the manager is slightly the firm could face ta for this claim is as 2022 Rs 75680 98710	05+05	CO2	BT4	
	Debtors Bank Creditors	32000 93100	78450				
	Bank overdraft		24890				
	1 Tienidity ratio	and Current ratio	and comment on the				

4	B) An investment of Rs 200,000 is expected to generate the following cash inflows in 5 years:				
	Year 1: Rs55,000 Year 2: Rs 60,000	, so		s**	
	Year 3: Rs 32,000 Year 4: Rs 35,000	*			
	Year 5: Rs 20,000 Compute payback period of the investment. Should the investment be made if management wants to recover the initial investment in 3 years or less?	05	CO3	·BT4	
Q4	Explain the role of "TIME" in financial decision-making process. How to calculate future value of investment?	(05+0 5)	CO3/ CO4	BT3	
Q5	How to compute break-even point and margin of safety? Draw the detailed format of calculating Gross Taxable Income.	(05+0 5)	CO4	BT2	

MANAY RACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF SCINECES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM	12-12-2023 (I
COURSE NAME	Physical Chemistry-IV	SUBJECT CODE	СНН301В-Т
PROGRAM	B.Sc. (Hons.) Chemistry	CREDITS	4
TIME DURATION	180 Minutes	MAX. MARKS	100
NAME OF FACULTY	Dr. Arpit Sand	NAME OF COURSE COORDINATOR	Dr. Arpit Sand

Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
P	1	Discuss any two postulates of Quantum Chemistry	2.5+2.5	CO1	BT3
PART-A	2	Deduce Expression for time dependent Schrodinger wave equation	5	CO1	BT4
>	3	A cricket ball weighing 100g is to be located within 0.1 Å. What is the uncertainty in its velocity?	5	CO1	BT2
P,	4	Draw the correlation diagram of water molecule	5	CO1	BT3
PART-B	5	Explain LCAO approximation based on MOT	5	CO2	BT2
=	6	Write a short note on variation theorem	5	CO2	BT4
PART-C	7	The pure rotational spectrum of gaseous HCl consist of a series of equally spaced lines separated by 20.80cm ⁻¹ Calculate the inter nuclear distance of the molecule The atomic masses are ¹ H=1.673×10 ⁻²⁶ ³⁵ Cl=58.06×10 ⁻²⁶ h=6.626×10 ⁻²⁶ Js	5+5	CO3	BT4
0	8	Homonuclear diatomic molecule are IR inactive while Hetronuclear diatomic molecule are IR active Explain	5	CO3	BT3

	9	Discuss vibrational spectra of diatomic molecule (expression) & explain the term zero point energy (Z.P.E.) also explain Fundamental Vibrational Frequency.	5+5	CO3	BT3
	10	Discuss mechanism of working of microwave oven based on spectroscopy.	5	CO4	BT2
	11	Explain Morse Potential energy for an anhormonic diatomic oscillator.	5	CO4	BT3
	12	Discuss Bathochromic Effect and Hypsochromic effect with suitable examples	5+5	CO5	BT3
PART-D	13	Draw the sketch diagram of NMR spectrometer.	5	CO5	BT3
T-D	14	Write a short note on hypefine splitting	5	CO5	BT4
	15	Write a short note on Chemical Shift and principal of ESR spectroscopy.	5+5	CO5	BT3
	16	Difference between Raman and infrared spectra	5	CO5	BT4

END

MANAY RACHNA UNIVERSITYE

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM/SESSION	16.12.2023 (]
COURSE NAME	BIOMOLECULES AND NATURAL PRODUCTS	COURSE CODE	СНН302В-Т
PROGRAM	B.Sc. (Hons.) Chemistry	CREDITS	1
TIME DURATION	03:00 hrs	MAX. MARKS	100
NAME OF FACULTY	ANJU SHARMA	NAME OF COURSE COORDINATOR	ANJU SHARMA

						angre
Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	PI
	1	What are the components of DNA and RNA name them.	2	CO1	BT2	
PART-A	2	Draw structure of THYMINE, CYTOSINE and URACIL.	3	COI	BT2	
T-A	3	Explain Different types of RNA. Write their roles.	4.	CO1	BT4	
	4	How WATSON and CRICK proposed the structure of DNA. Explain the double helical model of DNA.	6	CO2		
PART-B	5	Draw structure of :- i) glycine ii) alanine iii) tryptophan AMINO ACIDS.	2*3=6	C02	BT2	
	6	Draw and explain any one amino acid synthesis.	4	CO2	BT5	
PART-C	7	Define Peptides. Draw and explain the synthesis of peptides by SEEHAN Synthesis.	5	CO3	BT3	
r-c	8	Define carbohydrates and draw structural formula for below mentioned carbohydrates. i) arabinose	10 -	CO3	BT4	

	fam. Y	ii) Fructose	7			ē 1
		iii) maltose		·		
		iv) ribose				
		Define below mentioned terms:-				-
		i) anomers and anomerization				
	9	ii) specific rotation.	2.5*2=5	CO3	BT5	
	10	Draw and explain all reaction for the structure elucidation of fructose.	10	502		
	THE REAL PROPERTY.		10 :	CO3	BT2	
	11	Draw and explain Ruff's Degradation for conversion of higher aldose to lower aldose.	10	004		
		Define natural dyes and artificial dyes. Draw	10	CO4	BT3.	
	75025	and explain the structure elucidation of				
PART-D	13	indigotin dye.	3,7	CO4	BT4	
Ξ		Draw the synthesis of Methyl Orange and				
0	14	Malachite green Dyes. Write the applications.	5,5	CO4	BT5	
		a) Explain two Witts theory of colour				
		classification.				
	1	b) Explain Mordant dyes.				
	15	c) Vat dyes with applications.	3*5=15	CO4	BT3	

************ END

END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination Dec-2023"

SEMESTER	Vth	DATE OF EXAM	18.12.2023
SUBJECT NAME	ANALYTICAL CHEMISTRY & SPECTROSCOPY	SUBJECT CODE	СНН303В Т
BRANCH	Chemistry	SESSION	I
TIME	8:30-11:30 am	MAX. MARKS	100
PROGRAM	B.Sc.(H)	CREDITS	4
NAME OF FACULTY	Dr. Priti Gupta	NAME OF COURSE COORDINATOR	Dr. Priti Gupta

Note: All questions are compulsory.

Note: All questions are compulsory.						
Q.N		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	
PAF	1(A)	Calculate the normality of the solution obtained by dissolving 0.321 g of the salt sodium carbonate (Na ₂ CO ₃) in 250 mL water. (Assuming the salt solution is being used in a complete neutralization by a strong acid.)	4	COI	BT4	
PART-A	1(B)	Classify thermal methods based upon their principle and property measured.	5	COI	BT2	
	1(C)	Discuss the role of Analytical Chemistry in Pharmaceuticals and Environmental fields.	6	COI	BTI	
P/	Q2(A)	Depending upon the symmetry and the value of £max discuss the classes of Transition Probability.	5	CO2	BT2	
PART-B	2(B)	Aniline absorbs at 280 nm (ϵ_{max} = 8600) but in acidic solution, the main absorption band is seen at 203 nm (ϵ_{max} = 7500) which is comparable to benzene. Explain why?	5.	CO2	ВТ3	
	2(C)	How UV-visible spectroscopy is helpful in: 1) Detection of Functional group 2) Distinction in conjugated and non-conjugated compounds	5	CO2	ВТІ	
	3(A)	Justify why a capillary column gives better efficiency as compared to packed column in a gas chromatography analysis (explain using Van Deemter terms)	5	CO3	BT4	

*			i i	Ĭ.	
		Why Gel chromatography is known as Exclusion			
		Chromatography? Also discuss its applications in			
		Molecular weight determination and purification	-	CO3	 BT4
	3(B)	of biological macromolecules.	7	CO3	D14
		How the resolution of chromatographic column			
		increases with theoretical plates? With the help of			
		block diagram discuss the instruementation of	6		
	3(C)	HPLC.	8	CO3	BT3
		Differentiate between GLC and GSC. Also discuss			
	3(D)	the consideration points should be taken into			
		account while selecting a carrier gas.	8	CO3	BT4
		Discuss the principle of Thin -Layer			
		Chromatography. In what way it is superior to		I let regarde	Automotive v
	3(E)	paper chromatography?	7	CO3	BTI
		Define the term Thermogravimetry and classify it			
	4(A)	into various types.	3+5	CO4	BTI
	4 (A)	How TGA curve is affected by Sample			
		characteristics like weight of the sample, Sample			
	4(B)	particle size and heat of reaction.	8	CO4	BT2
P	4(D)				
A.F.		Using Thermogravimetric analysis, analyse the		100000000 A	
PART-D	4(c)	decomposition pattern of calcium oxalate.	6	CO4	BT4
ם		Discuss the applications of DTA techniques in			
	4(D)	Physical and Analytical chemistry.	7	CO4	BT2
	4(D)	On the basis of size of sample, Specific heat			
		measurement, Sensitivity of measurement of heat of			
100		transition and heating and cooling cycles compare			
	4(E)	DTA and DSC techniques.	6	CO4	BT3

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM/SESSION	20.12.2023(I
COURSE NAME	CHEMISTRY IN AGRICULTURE	COURSE CODE	CHS304B
PROGRAM	B.Sc. (Hons.) CHEMISTRY	CREDITS	2
TIME DURATION	2:00 Hrs	MAX. MARKS	50
NAME OF FACULTY	ANJU SHARMA	NAME OF COURSE COORDINATOR	ANJU SHARMA

Q.NO.	OHECTIONS	T		Sancful	
Q.IVO.	QUESTIONS	MARKS	CO	BLOOM'S	PI
high 1	Flucidate soil analysis, Weiter C. 1		ADDRESSED	LEVEL	
13.	Elucidate soil analysis. Write reason for doing it.	3	CO1	BT3	
2	Write a short not on absorption of ions by soil	4	CO1	DTO	
P	and cation exchange capacity (CEC).	7	COI	BT2	
PART-A	Describe Biofertilizers. Write classifications of Biofertilizers. Write constraints in Bi fertilizers technology.	8	CO2	BT4	
110 - 4		5*2=10		BT2	
	ii) BHC		CO2		
PART B	agriculture to control pest. Write classification of pesticide with example	6	CO3	BT3	
B 6	Define Biopesticides. Write preparation environmental effect and human health risk of 2, 4D and 2, 4, 5-T	5,5	CO3	BT3	
7	C II				
	Spell out short notes on :- i) Plant growth promoters. ii) Gibberlin		×		
	iii) Defoliants	3*3=9	CO4	BT4	

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	III .	DATE OF EXAM/SESSION	11.12.2023(11)
COURSE - NAME	Real Analysis	COURSE CODE	MAH204B
PROGRAM	B.Sc.(Hons.) Mathematics	CREDITS	4
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. Ramapati Maurya	NAME OF COURSE COORDINATOR	Dr. Ramapati Maurya

Note: All questions are compulsory.

Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	PI
PART-A	1(A)	Prove that supremum of a set S of real numbers, whenever it exists, is unique.	5	CO1	BT4	1.1.1 2.1.1
	1(B)	For the following sets, Find the supremum and the infimum, if they exist: (i) $S = \left\{ (-1)^n \left(\frac{1}{4} - \frac{4}{n} \right) : n \in N \right\}$ (ii) $S = \left\{ 1 - \frac{1}{n} : n \in N \right\}$	5	CO1	ВТ3	1.1.1 - 2.1.1
	1(C)	Find the derived set of the following sets: (i) $A = \left\{\frac{1}{n}, n \in N\right\}$ (ii) $A = \left\{1 + \frac{(-1)^n}{n}, n \in N\right\}$	5	CO2	ВТ3	1.1.1 2.1.1 4.3.1 4.1.1
	2(A)	State and prove sandwich theorem.	. 5	20	BT4	1.1.1 2.1.1
PART-B	2(B)	Show that $\lim_{n\to\infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right] = \frac{1}{\sqrt{2}}.$	5	CO2	BT4	1.1.1 2.1.1 4.3.1
	2(C)	Show that the sequence $\{s_n\}$, where $s_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ is convergent.	5		BT4	1.1.1 2.1.1 4.3.1

100 1/2			,	r		1
	3(A)	Prove that a necessary condition for convergence of an infinite series $\sum u_n$ is that $\lim_{n\to\infty} u_n = 0$.	5	(KID	ВТ3	1.1.1 2.1.1 4.3.1
PART-C	3(B)	Examine for the convergence of the series $1 + \frac{x}{1!} + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \cdots, x > 0.$	12	CO3	BT4	2.1.1 4.3.1
	3(C)	State Cauchy's n th root test. Also test for the convergence of the series $\frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$, $x > 0$.	9		BT4	1.1.1 2.1.1 4.3.1
	3(D)	Apply Cauchy integral test to test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$.	9		ВТ3-	1.1.1 2.1.1 4.3.1
	4(A)	Show that the series $1 - \frac{1}{3.4} + \frac{1}{5.4^2} - \frac{1}{7.4^3} + \cdots$ is convergent. Also, examine the series for absolute convergence.	12-		BT4	1.1.1 2.1.1 4.3.1
PART-D	4(B)	Show that the series $\sum \frac{(-1)^{n+1}}{3n+2}$ is conditionally convergent.	9	CO4	BT4	1.1.1 2.1.1 4.3.1
	4(C)	Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{x}{1+nx^2}$ is uniformly convergent in any closed interval I .	14		BT4	1.1.1 2.1.1 4.3.1

END

MANAV RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM	15.12.2023 (1)
COURSE NAME	Geo. Two and Three Dimensions	COURSE CODE	MAH113B
PROGRAM	B.Sc.(Hons.) Mathematics.	CREDITS	04
TIME DURATION	180 Mins.	MAX. MARKS	100
NAME OF FACULTY	Dr. Bhawna Singla	NAME OF COURSE COORDINATOR	Dr. Advin Masih

Note:	All ques	tions are compulsory.			134,	KOLESO!
Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
P	1(A)	What conic does the equation $36x^2 + 24xy + 29y^2 - 72x + 126y + 81 = 0$ represents.	5	CO1	BT2	1.1. 1.1.
PART-A	1(B)	Find the coordinate of the center of the conic $x^2 - 3xy + y^2 + 10x - 10y + 21 = 0$.	5 _	CO1	BT2	1.1. 1.1.
-A	1(C)	Obtain the length of the axis for the conic $5x^2 - 6xy + 5y^2 + 22x - 26y + 29 = 0$	5	CO1	вт3	1.1.
PA	1(D)	Prove that one and only one conic of a confocal system will touch a given straight line.	5	CO2	BT2	1.1 1.1.
PART-B	1(E)	Explain Director circle and derive its equation to the conic $\frac{l}{r} = 1 = e \cos \theta$.	5	CO2	BT2	1.1 3.1.
3	1(F)	Derive the equation of the circle with radius a and the touching the initial line at pole in polar form.	5	CO2	BT2	1.1 3.1.
	Q2(A)	Obtain the equation of the sphere having the circle $x^2 + y^2 + z^2 + 7y - 2z + 2 = 0$, $2x + 3y + 4z - 8 = 0$ as a great circle.	12	CO3	BT2	1.1 3.1
PART-C	(B)	Find the centres of the two spheres which touch the plane $x + 2y + 2z - 5 = 0$ at the point (1,1,1) and the sphere $x^2 + y^2 + z^2 + 2x + 4y + 6z - 11 = 0$.	12	CO3	BT3	1.1 1.1
	(C)	Find the equation of the right circular cone whose vertex is at the origin, axis the line	11	CO3	вт3	1.1 3.1

		$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$, and which has a vertical angle of 60° .				
	Q3(A)	Derive the equation of right circular cylinder of radius 3 and axis as the line $\frac{x-1}{2} = y - 2 = \frac{z-3}{2}$	12	CO4	вт3	1.1.1 1.1.2
PART-	(B)	Obtain the equation of the two tangent planes which contain the lines given by $7x + 10y = 30$, $5y - 3z = 0$ and touches the ellipsoid $7x^2 + 5y^2 + 3z^2 = 60$.	12	CO4	BT3	1.1.1 3.1.2
Ð	(C)	Find the equation of enveloping cylinder of the sphere $x^2 + y^2 + z^2 - 4x + 6y - 8z - 4 = 0$ having its generator parallel to the line $\frac{x}{-3} = \frac{y}{5} = \frac{z}{1}$.	11	CO4	вт3	1.1.1

END

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End-term Examination, Dec-2023"

SEMESTER -	· III	DATE OF EXAM	18/12/2023
COURSE NAME	Group Theory	COURSE CODE	ман206В (Ш
PROGRAM	B.Sc. (Hons.) Mathematics	CREDITS	4
TIME DURATION	3 Hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Deepa Arora	NAME OF COURSE COORDINATOR	Dr. Deepa Arora

FACU	LIY				Car.	
	Q.NO. QUESTIONS		MA RK S	CO ADD RESS ED	BLOO M'S LEVE L	PI
-	Q1(A)	If in a group G, $a^5 = e$, $aba^{-1} = b^2$ for $a, b \in G$ then calculate $o(b)$?	5	CO1	вт3	1.1.1 3.1.2
PART-A	Q1(B)	Show that $H = \{nx : x \in Z\}$ is a subgroup of $\{Z, +\}, n \in Z$.	5	CO1	вт3	1.1.1
-A	Q1(C)	Find out all the right cosets of H in G , where $G = \langle a \rangle$ is a cyclic group of order 10 and $H = \langle a^5 \rangle$.	5	CO2	ВТ3	1.1.1 3.1.2
PA	Q2(A)	Define quotient group. If G is a cyclic group and N is a subgroup of G , then prove that G/N is cyclic.	7	CO2	BT2	1.1.1 3.1.1
PART-B	Q2(B)	Show that $H = \{1, -1\}$ is a normal subgroup of the group $G = \{1, -1, i, -i\}$. Find all the elements of G/H .	8	CO2	вт3	1.1.1 3.1.2
	Q3(A)	If $f: G_1 \to G_2$ is homomorphism such that e_1 is the identity of G_1 and e_2 is the identity of G_2 , then show that $f(e_1) = e_2$.	2	CO4	BT3	1.1.1 3.1.1
PAI	Q3(B)	Show that an infinite cyclic group G is isomorphic to the additive group of integers.	5	CO4	BT2	1.1.1 3.1.1
PART-C	Q3(C)	Check whether the mapping $f: C \to R$ defined as $f(x+iy) = x$ is a homomorphism of the additive group of complex numbers onto the additive group of real numbers?	11	CO4	BT4	1.1.1 3.1.1
	04(A)	State and prove the second theorem of isomorphism.	8	CO4	BT2	1.1.1 3.1.1

PART-C	Q4(B)	 (i) Compute a⁻¹ba where a = (1 3 4), b = (2 3 5 4) (ii) Determine whether the given permutation is even or odd f = (1 2 3 4 5)(1 2 3)(4 5). (iii) Prove that every permutation can be expressed as the product of disjoint cycles. 	3+1 +3	CO3	вт3	1.1.1 3.1.1
T-C	Q5 .	(i) If H and K are two normal subgroups of a group G such that $\subseteq K$, then prove that $G/K \cong \frac{G/H}{K/H}$. (ii) State Cayley Theorem.	8+2	CO4	BT2	1.1.1 3.1.2
	Q6(A)	For any group G, show that $I(G)$ is a normal subgroup of	8	CO5	вт3	1.1.1
		Aut(G). Prove that $Aut(G)$ is a subgroup of $A(G)$.	7.	CO5	BT2	1.1.1
PART-D	Q6(B)	(i) Show that if G is an infinite cyclic group, then Aut(G) is isomorphic to a cyclic group of order 2. (ii) Calculate $Aut(G)$, where $G = \langle a \rangle$, $a^{10} = e$.	8 +2	CO5	вт3	1.1.1 3.1.2
Đ Đ	Q8	Define conjugate elements. If G is a finite group, then show that $o(G) = \sum_{a \in G} \frac{o(G)}{o(N(a))}$ where the sum runs over one element a in each conjugate class.	2+8	CO5	ВТ3	1.1. 4.1.

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	3 rd	DATE OF EXAM	20/12/2027
COURSE NAME	Partial Differential Equation	COURSE CODE	MAH207B (II)
PROGRAM	B.Sc.(Hons.)-Mathematics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Dinesh Tripathi	NAME OF COURSE COORDINATOR	Dr. Dinesh Tripathi

Note: Note: All questions are compulsory.

	TOTE	. Ivoie. Z	Au questions are compulsory.			Control of	andul
	Q.NO.		QUESTIONS .	MAR KS	CO ADDRESSED	BLOOM'S LEVEL	P
	PA	1(A)	Find the integral surface of $x^2p + y^2q + z^2 = 0$, which passes through the hyperbola $xy = x + y$, $z = 1$.	5	CO1	BT4	1.1
	PART-A	1(B)	Solve the PDE $(xz + y^2)p + (yz - 2x^2)q + 2xy + z^2 = 0$.	5	CO1	ВТ3	1.1
A	A	1(C)	Derive the PDE for $z = a \log \left\{ \frac{b(y-1)}{1-x} \right\}$ by eliminating arbitrary constants.	5	CO1	ВТ3	3.1
	PAI	2(A)	Find the deflection of the vibration of string of length π and fixed ends, corresponding to zero initial velocity and initial deflection $f(x) = k(\sin x - \sin 2x)$, for $c^2 = 1$.	5	CO2	BT4	3.1
	PART-B	2(B)	Using Charpit's special cases solve the following PDE; $z^2(p^2 + q^2) = x^2 + e^{2y}$.	5	CO2	ВТ3	4.1
		2(C)	Show that the system of equations $xp - yq = x$, $x^2p + q = xz$ are compatible and solve them.	5	C02	ВТ3	3.1
		Q3(A)	Find the complete integral of the equation $(D^3 - D^2D' - 2DD'^2)z = e^{x+2y}(x^2 + 4y^2).$	9	. CO3	BT4	4.1
PAI	PAF	3(B)	Solve $(D^2 - D'^2 + D + 3D' - 2)z = x^2y$.	9	CO3	ВТ2	4.1.
	PART-C	3(C)	Determine the solution of the PDE $r - s - 2t + 2p + 2q = e^{2x+3y} + xy + \sin(2x + y)$.	9	C03	BT4	4.1.
NEWS TO		3(D)	Reduce the PDE $x^2r - 4y^2t - 4yq = z + x^2y^2 \log y$ in PDE with constant coefficient and solve it.	8	CO3	BT4	3.1. 4.1.

P,	Q4(A)	Classify the DE $xyr - (x^2 - y^2)s - xyt + py - qx = 0$. Also reduce it in canonical form and solve it.	15	CO4	BT4	4
ART-	4(B)	Using Monge's method solve the PDE $(r - t)xy - s(x^2 - y^2) = qx - py$.	10	CO4	BT3	
D	4(C)	Solve $rq^2 - 2pqs + p^2t = pt - qs$.	10	CO4	BT2	

ENT

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM	12.12.2023 (I)
COURSE NAME	STATISTICAL INFERENCES	COURSE CODE	МАН306В
PROGRAM	B.Sc. (Hons.) Matts	CREDITS	4
TIME DURATION	3 Hours	MAX. MARKS	100
NAME OF FACULTY	Ms. Savitta Saini	NAME OF COURSE COORDINATOR	Ms. Savitta Saini

Note: All questions are compulsory.

, Q	.NO.	QUESTIONS	M AR KS	CO AD DR ESS ED	BLO OM' S LEV EL	PI
PA	1(A)	Differentiate between simple and composite statistical hypothesis with examples.	5	CO1	вт2	1.1.1 3.2.2
PART-A	1(B)	Discuss the concept of interval estimation and provide suitable illustration.	5	CO1	ВТ2	2.1.1
	1(C)	What are the properties of a maximum Likelihood Estimators?	5	CO1	BT1	1.1.1
	2(A)	Give an example of an estimator (i) which is consistent but not unbiased. (ii) which is unbiased but not consistent.	5	CO2	BT1	3.2.3 4.2.2
PART-B	2(B)	Explain the main difference between the parametric and non-parametric approaches to the theory of statistical inferences. Illustrate your answer by giving a suitable examples.	5	CO2	BT2	2.1.1 3.2.2 4.2.2
	2(C)	Define Minimum Variance Unbiased Estimators. Obtain the MVB estimator for μ in normal population $N(\mu, \sigma^2)$, where σ^2 is known.	5	CO2	BT1	1.1.1 3.2.1 4.1.2

3(A)	community of 32 mather 56 32 52 54 37 25 30 Use the Wilco (a) Class	6 2 4 3 4 4 3 3	less than 4 alty yields to 2 4 9 8 0 5 8 ed - rank te	2 years, a s the followin 61 35 26 36 38 52	19 ages (in yes 19 ages (in ye	ty in the State random sample ars): 52	15	CO3	вт3	2.1.1 3.2.2
3(B)	Describe the mathematical model for ANOVA testing in one – way classification, stating clearly the assumptions involved.						5	CO3	BT1	1.1.1 3.2.2 4.1.2
4	number of datime in days) Doctors 1 2 3 4 5 Discuss the d (a) The d	Treatme 1 10 11 9 8 12 ifference bootors and reatments.	tient takes ne table: nts 2 14 15 12 13 15 petween: Use $\alpha = 0$ In (a) doctors	3 23 24 20 17 19	4	5 20 21 19 20 22	15	CO3	BT4	2.1.1

TAK

		the thre	ee local nber of	hospita	als say,	A, B aı	nd C is	the sam	ie, a rai	ndom c	is kept in heck on veals the				
	5	Hos	pital	8	5	9	2	7		8	2	15	604	D.T.4	
		Hos	pital	4	3	8	7	7		l	5	15	CO4	BT4	1.1.1
		Hos _l C	oital	1	4	9	8	7	2	2	3				
		Test the	e hypot	hesis at	$\alpha = 0$.05.					!			83	
ם דם מ		random the clai populat	sample m that	e of 120 the med) indivi lian HI	iduals fi DL chol	rom the esterol	adult p	opulati	ion of a	evel in a city. Test			a i	
		36	44	33	26	20	43	35	35	23	54				
		41	42	43	42	46	40	35	41	41	30				
6	(1)	28	57	33 49	36	39	43	31	47	48	34			ВТ4	3.2.3
0	(A)	23	31	38	38	43	42	35	35	47	55	15	CO4		
温色		40	38	38	40	44	42	35	37	36	36				4.2.2
		30	49	44	37	37	36	35	44	40	42				
		42	31	48	40	37	36	41	42	41	43				
數學		33	36	36	39	38	44	35	40	38	44				
		40	36	42	35	36	48	32	36	38	41				
		37	41	39	35	43	42	44	36	31	46			0.53	
		Use the	sign te	st at the	0.01 1	evel of	signific	ance.							

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM/SESSION	16.12.2023 (I)
COURSE NAME	Linear Algebra	COURSE CODE	MAH302B
PROGRAM	B.Sc.(Hons.) Mathematics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Ramapati Maurya	NAME OF COURSE COORDINATOR	Dr. Kamlesh Kumar

Note: All questions are compulsory.

YOU	e. All gu	desilons are compulsory.			P	
Q	Q.NO.	QUESTIONS	MARKS	CO ADDRES SED	BLOO M'S LEVEL	PI
	1(A)	Show that the set $\{x^2+3x-2, 2x^2+5x-3, -x^2-4x+4\}$ is a basis of vector space $\mathcal{P}_2(\mathbb{R})$.	5	CO1	BT2	1.1. 1.2. 3.1.
PART A	1(B)	Determine whether the following sets are subspace of $\mathbb{R}^3(\mathbb{R})$. Justify your answers. $W_1 = \{(x, y, z): 2x - 7y + z = 0\}$ $W_2 = \{(x, y, z): x = z + 2\}$.	5	COI	BTJ	1.1. 1.2. 3.1.
	1(C)	Prove that $(-\alpha). a = \alpha. (-a) = -(\alpha. a)$, where $\alpha \in \mathbb{F}$ and $a \in V$.	5	CO1	ВТ2	1.1.
	2(A)	Show that the mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x,y,z) = (2x, x-y, x+2y+z)$ is a linear transformation.	5	CO2	BT2	1.2.
PART R	2(B)	Let $T: M_{2\times 3}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the linear transformation defined by $T\begin{pmatrix} a & b & c \\ u & v & w \end{pmatrix} = \begin{pmatrix} 2a - b & c + 2b \\ 0 & 0 \end{pmatrix}.$ Verify the rank nullity theorem.	5	CO2	BT3	3.1
	2(C)	Let T be the linear operator on \mathbb{R}^3 defined by $T(x,y,z) = (2y + z, x - 4y, 3x).$	5	CO2	ВТ2	1.1.

ς.					i.	4
	3(A)	Determine all solutions of the following system of equations in \mathbb{R} $x_1-4x_2-x_3+x_4=3$ $2x_1-8x_2+x_3-4x_4=9$ $-x_1+4x_2-2x_3+5x_4=-6.$	12	CO3	BT3	1.1
PART-C	3(B)	Check whether the matrix $A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$ over the field of real number $\mathbb R$ is diagonalizable or not by finding the basis of eigen vectors.	14	CO3	ВТ3	1.2
	3(C)	Let $A = \begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix}$ be a matrix of order 3×3 over \mathbb{R} . Find the characteristic polynomial of A. Check whether the matrix A is diagonalizable or not with the concept of algebraic multiplicity and geometric multiplicity of eigen values.	9	CO3	BT4	1.1
	4(A)	Show that the map $\langle , \rangle : \mathbb{C}^3 \times \mathbb{C}^3 \to \mathbb{C}$ defined as $\langle (z_1, z_2, z_3), (w_1, w_2, w_3) \rangle = z_1 \overline{w_1} + z_2 \overline{w_2} + z_3 \overline{w_3}$ is an inner product space in \mathbb{C}^3 .	9	CO4	ВТ3	1.2
PART-D	4(B)	Find the orthogonal basis using the Gram-Schmidt process to given subset $S = \{(2, -1, -2, 4), (-2, 1, -5, 5), (-1, 3, 7, 11)\}$ of the standard inner product space \mathbb{R}^4 .	14	CO4	BT2	1.1
	4(C)	Prove that $16 \le (a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right) \text{ for all positive numbers } a, b, c \text{ and } d.$	12	CO4	BT4	1.7

END

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER .	V	DATE OF EXAM/SESSION	18.12.2023 (1)
COURSE NAME	Numerical Analysis	COURSE CODE	MAH301B
PROGRAM	B.Sc. (Hons.)Mathematics	CREDITS	4
TIME DURATION	3 Hr.	MAX. MARKS	100
NAME OF FACULTY	Dr. Ruchi Gupta	NAME OF COURSE COORDINATOR	Dr. Ruchi Gupta

Note: All questions are compulsory.

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PART-A	Q1	Find the value of y when $x = 10$; if the following value of x and y are given below, by Using (i) Lagrange's interpolation formula (ii) Newton's divided difference formula: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	7.5+7.5	CO1	BT2	4.3.1
PART-B	Q2	The following data gives corresponding values of pressure and specific volume of a super-heated system. v 2 4 6 8 10 p 105 42.7 25.3 16.7 13 Compute the rate of change of (i) Pressure with respect to volume when v=2 (ii) Volume with respect to pressure when p=10.	7.5+7.5	CO2	ВТ4	1.1.3
PART-C	Q3(a)	Apply Jacobi iteration method to solve the equations: 8x - 3y + 2z = 20 $4x + 11y - z = 33$ $6x + 3y + 12z = 35$.	8.5	CO3	BT3	4.3.1

	(b)	Apply Factorization method to solve the equations: $2x-3y+10z=3$ $-x+4y+2z=20$ $5x+2y+z=-12$	9	CO3 .	вт3	4.3.1
	Q4(a)	Using Jacobi's method ,compute all the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 0.5 \\ 1 & 1 & 0.25 \\ 0.5 & 0.25 & 2 \end{bmatrix}$	9	CO3	ВТЗ	4.5.1
	(b)	Compute the largest eigen value and the corresponding eigen vector of the matrix $ \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}. $	8.5	CO3	ВТЗ	4.3.1
	Q6	Using Runge-Kutta method of order 4, find y for x= 0.1, 0.2 ,0.3 given that $\frac{dy}{dx} = xy + y^2$, $y(0) = 1$. Continue the solution at x=0.4 using Milne's Method.	12+5.5	CO4	ВТ4	3.1.1
	Q7(a)	Solve the Poisson equation $u_{xx} + u_{yy} = -81xy$, $0 < x < 1,0 < y < 1$ given that $u(0,y) = 0$, $u(x,0) = 0$, $u(1,y) = 100$ and $u(0,y) = 100$.	9	CO4	ВТЗ	3.1.1
PART-D	(b)	Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in Fig below. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.5	CO4	втз .	3.1.1

END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM	2012.2023 (I)
COURSE NAME -	Metric Spaces	COURSE CODE	МАН303В
PROGRAM	B.Sc.(Hons.)Mathematics	CREDITS	04
TIME DURATION	180 Mins.	MAX. MARKS	100
NAME OF FACULTY	Dr. Aparna Vyas	NAME OF COURSE COORDINATOR	Dr. Advin Masih

Note: All Parts are compulsory.

		POSSESSED TO THE PROPERTY OF THE PARTY OF TH			Paris	
Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	-PI
PART-A	1(A)	Let X be any non-empty set and let d be the function defined as $d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{if } x \neq y. \end{cases}$ Show that (X,d) is a metric space.	05	C01	BT02	1.1.1 1.2.1
	1(B)	Prove that a subset of a metric space (X, d) is closed if it contains all its limit points.	05	CO1	ВТ02	1.1.1
	1(C)	Show that in a metric space, finite intersection of open set is open	05	CO1	BT02	1.1.1,
PART-B	1(D)	Show that if $< x_n >$ is a Cauchy sequence, then any cluster point $< x_n >$ of is a limit of $< x_n >$.	05	CO2	ВТ02	1.1.1, 1.1.2
	1(E)	Find the fixed points of the mapping $T: R \to R$ defined as $T(x) = x^2 \forall x \in R$	05	CO2	BT03	1.2.1, 3.1.2
	1(F)	Find the completion]0,1].	05	CO2	BT04	1.1.1, 1.1.2
PART-C	Q2(A)	Check whether an open interval]0,1[with the usual metric is compact or not?	12	CO3	BT03	1.2.1, 3.1.2
	(B)	Let (X, d) be a metric space and $S \subset X$. Show that S is compact subset of X if only if every dopen cover of S has a finite subcover.	12	CO3	BT03	1.1.1, 1.1.2
	(C)	Show that every totally bounded metric space is bounded. However, the converse need not be	11	CO3	BT03	1.1.1, 1.2.1

		true.				
PAR	3(A)	Show that a subset of the real line \mathbb{R} containing at least two points is connected if and only if it is an interval.	12	CO4	BT03	1.1.
RT-D	(B)	Show by an example that a compact set need not be connected	12	CO4	BT04	1.2 3.1.
	(C)	If S and T are connected subsets of a metric space (X,d) which are not separated, prove that $S \cup T$ is also a connected set.	11	CO4	BT03	1.1 1.2.

****** END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

3 rd .	DATE OF EXAM/SESSION	11.12.2023 (1
Quantum Mechanics	COURSE CODE	PHH201B-T
B. Sc.(H) Physics	CREDITS	4
3 hrs.	MAX. MARKS	100
Dr. D. K. Sharma	NAME OF COURSE COORDINATOR	Dr. D. K. Sharma
	Quantum Mechanics B. Sc.(H) Physics 3 hrs.	EXAM/SESSION Quantum Mechanics B. Sc.(H) Physics The control of

SU PR	MESTE BJECT OGRAN	· NAME M	Quantum Mechanics B. Sc.(H) Physics	COU	ATE OF KAM/SESSION DURSE CODE REDITS		11.12.2023 (II PHH201B-T		
NA	ME DUI ME OF CULTY		3 hrs. Dr. D. K. Sharma	NAM	. MARKS E OF CO RDINATO	URSE	100 Dr. I	O. K. Sharm	a
Note	: All que	stions are	compulsory.			and the control of th		Sandarde	t-E
Q	.NO.	els.	QUESTIONS		MARKS	CC ADDRE		BLOOM'S LEVEL	
PART-A	Q. 1	Explain it	eisenberg uncertainty principle. with two simple examples. Give its ignificance.		6, 5, 4	CO	1	BT2, BT4	
PART-B	Q. 2	wave eq	Schrodinger's time-inder uation for a particle. Gi interpretation of the	ive the	9, 6	CO	2	ВТ3	
PART-C	Q. 3	function a probabili	ne hydrogen atom to find e and hence to determine the ty of finding the electron ar us in ground state.	9	8, 9	CO:	3	BT2	
 	Q. 4	harmonic values an	Schrodinger equation for oscillator to obtain its deigen functions.	s eigen	9,9	COS	3	BT3	
PART-D	Q. 5	which the region wh	n details the tunneling ef propagation of a particle th ere the particle's energy is otential energy.	rough a	9,8	CO ⁴	4	BT1	
Q. 6 Discuss the electron dipole selection rule and hence prove that $\Delta n = \pm 1$.		9,9	CO4	1	ВТ3				
		***	****** El	VD *	*****	****	***		
		27	* * *	****					

MANAY RACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER ·	m .	DATE OF EXAM/SESSION	16.12.2023 (II)
COURSE NAME	MATHEMATICAL PHYSICS III	COURSE CODE	PHH202B – T
PROGRAM	B.Sc. (H) Physics	CREDITS	4
TIME DURATION	3 hours	MAX. MARKS	100
NAME OF FACULTY	Dr. Moditma	NAME OF COURSE COORDINATOR	Dr. Moditma

Q.	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	Q.1	Determine the roots of the equation $z^3=1$ and depict them on the complex plane.	4+1=5	CO1	BT2	5.4.1
PART-A	Q.2	Consider a complex function $f(z) = u(x,y) + iv(x,y)$. Given $u(x,y) = e^x cosy$, determine a function $v(x,y)$ such that $f(z)$ is analytic. OR Consider the function $f(z) = \frac{1}{z^6+1}$. Examine its residues at the three points which lie in the 1st and 2nd quadrants.	10	CO1	BT4	5.4.1, 7.1.1
PART-B	Q.3	Find the Fourier cosine integral of $f(x) = \begin{cases} 0; & 0 < x < 2 \\ k; & 2 < x < 3 \\ 0; & x > 3 \end{cases}$	7	CO2	BT2	5.4.1
T-B	Q.4	Solve for the Fourier sine transform of $f(x) = x^2$; $0 \le x \le 1$.	8	CO2	ВТ3	5.4.1
	Q.5	Define the following terms: (i) Random experiment (ii) Sample space	2+2=4	C03	BT1	7.1.1
FART-C	Q.6	A bag contains 4 black and 5 red balls. Two balls are drawn from the bag one by one, without replacement. What is the probability that (i) first ball is red (ii) second ball is red given that the first ball drawn was red (iii) second ball is red given that the first ball drawn was black	1+2+2=5	C03	BT2	5.4.1, 7.1.1, 10.2.1
		Two dice are thrown simultaneously. Consider a Binomial experiment where success is defined such that sum of the two numbers obtained is equal to 7. (i) What is the probability of success and failure in this experiment?	1.2.2-3		DIZ	10.2.1
	Q.7	(ii) If 5 trials are performed, what is the probability of 3 successes?	3+3=6	CO3	BT2	5.4.1, 7.1.1, 10.2.1

2	A TOP	Show that for any probability distribution, the variance can be		· ·		
BALLEY !		expressed as:				
	The Real Property lies	$\sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$				
-	-	Hence obtain an expression for the variance of (i) Gaussian distribution				
1 E E	BALLEY					
111 111	1	OR				
MES.	0.8	(ii) Binomial distribution				5.
	Q.8	Without do you and austral discount lies around Downston to the	5+15=20	CO3	BT4	7
	S. S. L. S. E.	What do you understand by an abelian group? Demonstrate that: (i) Set R_0 of all non-zero real numbers forms an abelian group under				
THE STATE OF		multiplication.				
		(ii) The three cube roots of unity form an abelian group under				
74133	Q.9	multiplication.	2+5+5=12	CO4	BT4	5
		Write the expression of rotation matrix in 3 dimensions about the z-		551	511	3
		axis. Use this rotation matrix to show that rotation of the vector $\hat{\imath}$ by			*	5.
4 ,	Q.10	90° about the z-axis yields the vector \hat{j} .	2+8=10	CO4	BT2	7
		Classify the following differential equations as linear/non-linear:				-
BULL 20		(i) $y'' + y' + yx = 0$			الليور	
1000		(ii) $y'' + y' + y^2x = 0$				
1000	Panelli	(iii) $y'' + y' + x^2y = 0$				
17947	122	(iv) y'' + y'y + xy = 0				
-		(v) y'' + y = 0				
PART-D	Q.11		$1 \times 5 = 5$	CO4	BT2	5.
q		Consider the first order differential equation $\dot{x} = sinx$.		T-7-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-		
0	Dig Kal	(i) Identify whether this a linear or non-linear differential		S S		
D. L.	PHILIPPINE	equation.				
100		(ii) Identify the fixed points and determine their stability.			14	
TE TO	10000	(iii) Hence analyze the variation of $x(t)$ graphically.				
o.		OR		=		
		Consider the equation for population growth in an ecosystem being	.			
11/3	1000	defined as: $\dot{N} = rN(1 - \frac{N}{\nu})$, where r, k are constants.				
19 53 6 7			A¥3			
Service .		(i) Identify whether this a linear or non-linear differential			41	
2-1-3	1	equation.				
1277		(ii) Identify the fixed points and determine their stability.				5.
THE REAL PROPERTY.		(iii) Hence analyze the variation of $N(t)$ graphically.				7.
100000	Q.12		1+2+5=8	CO4	BT3	10
		******** END *********	***			100

DEPARTMENT OF SCIENCES Physics Program

"End Term Examination, Dec 2023"

SEMESTER	III	DATE OF EXAM	19.12.2023
SUBJECT NAME	Electromagnetic theory	SUBJECT CODE	РНН203В-Т
BRANCH	Physics	SESSION	I
TIME	3 hrs	MAX. MARKS	100
PROGRAM	B.Sc (H) Physics	CREDITS	4
NAME OF FACULTY	Dr. Shiv Kumar Dixit	NAME OF COURSE COORDINATOR	Dr. Shiv Kumar Dixit

Noie: All questions are compulsory from part A and part B.

Set A

	Q.NO.	QUESTIONS	MARKS	CO ADDRESS ED	BLOOM'S LEVEL	PI
	Q.1	 (i) State Divergence and Stokes theorem and calculate divergence of the function P = x²yz a_x + xz a_z (ii) For the given point P (-2, 6, 3), express point P in cylindrical and spherical coordinates. 	5+5	CO1	вт3	2.1.1
PART-A	Q.2	Given vectors $\mathbf{A} = 3a_x + 4a_y + a_z$ and $\mathbf{B} = 2a_y - 5a_z$, determine the angle between \mathbf{A} and \mathbf{B} .	5	CO1	BT4	2.1.1
A	Q.3	 (i) Explain Maxwell equation for a time varying field and determine an expression for displacement current (J_d). (ii) Derive an expression for electric field dielectric - conductor boundary condition for both tangential and normal component with diagram. 	5+5	CO2	BT4	1.1.1

		2-17-1-1	200	1		
4,		- ·				
	Q.4	If $A = 10a_x - 4a_y + 6a_z$ and $B = 2a_x + a_y$, find: (a) the component of A along a_y , (b) the magnitude of $3A - B$, (c) a unit vector along $A + 2B$.	5	CO2	вт3	2.1.1
	Q.5 ·	Explain Poynting theorem and Poynting vector with expression and diagram.	5+5+5	CO3	BT2	1.2.
•	Q.6	What are intrinsic impedance and propagation constant? Calculate both parameters for free space and lossless dielectrics.	7+8	CO3	BT2	2.1.
P	Q.7	Explain skin depth, how it is dependent on frequency?	5	CO3	вт3	1.2
PART-B	Q.8	What are the applications of transmission lines? Explain any three.	10	CO4	ВТ3	1.2
	Q.9	What is transmission line? Explain its parameters for coaxial line.	3+7	CO4	BT2	1.:
	Q.10	What is characteristics impedance of a transmission line? Derive an equation for lossless and distortion less transmission line.		CO4	BT 4	1.
		**************************************	*****	*****	***	

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES (PHYSICS)

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM	12.12.2023 (T)
COURSE NAME ·	Statistical Physics	COURSE CODE	РНН301В-Т
PROGRAM	B.Sc (H) Physics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Aditya Sharma	NAME OF COURSE COORDINATOR	Dr. Aditya Sharma

Note: Part A & B: All questions are compulsory. Part C & D: 2 (A) and 3 (C) are having an optional question.

(SET-A)

Q	.NO.	QUESTIONS	MAR KS	CO ADDRE SSED	BLOO M'S LEVEL	PI
	1(A)	Find the number of ways in which 10 distinguishable particles can be arranged in an order.	3	CO1	BT3	
PART-A	1(B)	Deduce the relation for partition function with Gibb's potential.	3	CO1	ВТ э	
R.	1(C)	Give relations for all four thermodynamic potentials.	3	CO1	BT3	
PA	1(D)	Define macrostates and microstates and give an example for distributing four particles in two boxes.	3	CO1	BT3	
	1(E)	Briefly distinguish between different kinds of ensembles.	3	CO1	BT3	
	1(F)	Calculate the average energy of an oscillator of frequency 5.6 x 10 ¹² S ⁻¹ at 330 K, treating it as a class oscillator.	sical 3	CO2	BT3	
	1(G)	A black body is placed in an enclosure whose walls are kept at 300 K. Compare the rate at which heat is gained or lost by the body when its temperature is (i) 500 K and (ii) 200 K	3	CO2	BT3	
	1(H)	Write the Saha's ionization formula stating the meaning of all symbol used.	3	CO2	BT3	
I-B	1(1)	Show that Rayleigh Jean's law is incorporated in Planck's radiation law.	3	CO2	BT 3 ₁	
PART-B	1(J)	A body at 1500 K emits maximum energy at a wavelength 20000 angstrom. If the sun emits maximum energy at wavelength 5500 angstrom, what	3	CO2	ВТ3	

_	Christian Control			1	1 1	
		would be the temperature of the sun?				
	Q2(A)	Derive the expression for the most probable distribution of particles among various energy levels of a system obeying Bose- Einstein Statistics.	15	C03	BT4, BT3	
PART-C	Or	Derive the expression for the distribution of bosons as function of temperature for below and above the Bose-Einstein Condensation temperature.	2+3+ 5+5 = 15	CO3	BT4, BT3, BT2	
PAR	Q2(B)	What is Larmor precession? Determine the Larmor frequency for an election under the presence of Magnetic field.	2+8 =10	CO3	BT3, BT2	
	Q2(C)	Derive mathematical expression for Orbital Magnetic dipole Moment, Spin Magnetic Moment and Bohr Magnetron.	10	CO3	BT4, BT3	
	Q3(A)	What is Fermi-Dirac distribution law? Using the Fermi-Dirac distribution function, Derive a relation for Fermi energy.	15	CO4	ВТЗ	
PART-D	Q3(B)	Apply the Fermi-Dirac distribution and establish a relation for calculating Energy distribution of electrons in a metal.	15	CO4	BT2, BT3	
PA	Q3(C)	Calculate E_{F0} for electrons in a Metal.	5	CO4	BT	
	Or	Write a detailed comparison of three known Statistics.	5	CO4	BT2,	

END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES (PHYSICS)

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM	16/12/2023 (1)
COURSE NAME	Modern Physics	COURSE CODE	РНН304В-Т
PROGRAM	B.Sc (H) Physics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Aditya Sharma	NAME OF COURSE COORDINATOR	Dr. Aditya Sharma

Note: Part A: All questions are compulsory. Part B: 2 (A) and 3 (C) are having an optional question.

(SET-B)

Q.	.NO.	QUESTIONS	MARK S	CO ADDRE SSED	BLOO M'S LEVEL	PI
	1(A)	What is the theory of Relativity? Write the need of this theory, its types and Einstein postulates.	3	CO1	BT3	
A	1(B)	What is the frame of references? Explain the types of frame of references with suitable examples.	3	CO1	BT3	
PART-A	1(C)	Derive the Galilean Transformation equations for position, velocity and acceleration.	3	CO1	BT3	
PAI	1(D)	What are the proper time and proper length concepts? Write equations for relating the proper and relativistic time and length.	3	CO1	BT3	at
	1(E)	Derive the Einstein's Mass-Energy relation from the theory of Relativity.	3	CO1	BT3	±
	1(F)	Write postulates of the Bohr's atomic theory and explain the origin of various spectral lines from the electronic transitions.	3	CO2	BT3	
m	1(G)	Write the equations for different series of spectral lines observed in the Hydrogen atom case.	3	CO2	BT3	
PART-B	1(H)	Calculate the radius of First atomic shell in case of H atom and also evaluate the velocity of electron in this shell.	3	CO2	BT3	
	1(I)	Evaluate the ionization potential of Hydrogen atom.	3	CO2	BT3	
	1(J)	How many revolutions an electron can make before dropping from n=5 to n=1, within the time of $20x10^{-4}$ seconds.	3	CO2	BT3	

		What is Raman Effect? Provide the experimental set-				
		up details to observe the Raman effect. Why the				
		stoke and anti-stoke lines are observed in Raman	2+5+			
1000		experiment. Derive mathematical expressions for	3+5 =	99000000	BT4,	
323	Q2(A)	explaining the Raman effect using classical theory.	15	CO3	BT3	
		What is the Quantum mechanical Origin of Raman				
PART-C		effect. Derive mathematical expression for the			7227222 1	
2		quantum theory of Raman effect and explain the			BT4,	
A		findings which were not interpreted by classical	5+5+		BT3,	
P	Or	theory.	5 = 15	CO3	BT2	
		What is Larmor precession? Determine the Larmor	_			
		frequency for an election under the presence of	2+8	name var	BT3,	
	Q2(B)	Magnetic field.	=10	CO3	BT2	
		Derive mathematical expression for Orbital Magnetic				
		dipole Moment, Spin Magnetic Moment and Bohr			BT4,	
	2(C)	Magnetron.	10 .	CO3	BT3	
	Sept.	Write the description of nuclear stability under the;			,	
	Q3(A)	(i) Liquid Drop model, (ii) Fermi Gas model	10 :	CO4	BT4	
		How the nuclear Shell model predict the stability of	5.45			
		nuclei by introducing the magic numbers? Explain				
Ö		the need of total angular quantum number and thus				
PART-D	3(B)	calculate the magic numbers for (at least) $N = 3$.	15	CO4	BT3	
IR.		Why do we need nuclear detectors? Demonstrate the,			ртэ	
P/	02(0)	principle, construction and working of G.M. Counter.	10 `	CO4	BT2, BT4	
	Q3(C)		10	CO4	D14	
		Write principal, Construction and working of Scintillation Counter. Also explain the				
	Alle Harris	merits/demerits of scintillation counters over the				
BALL .	Or	G.M. counter.	10	CO4	BT4	
17 17 17		G.M. Counter.	10	CUT	דום	البيسان يبدروا

END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM/SESSION	18/12/2023 (L)
COURSE NAME	Condensed Matter Physics-I	COURSE CODE	РНН303В-Т
PROGRAM	B.Sc. (H) Physics	CREDITS	4
TIME DURATION	3 Hrs	MAX. MARKS	100 →
NAME OF FACULTY	Dr. Deepti Maikhuri	NAME OF COURSE COORDINATOR	Dr. Deepti Maikhuri

Note: All questions are compulsory. Use of scientific calculator is allowed during the exam.

[SET-A]

ON	0.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	
PART-A	1	(a)Define the following terms used in crystallography. (i) Crystal lattice and unit cell (ii) primitive cell (iii) packing factor (iv) coordination number (b)Obtain lattice constant and radius of the atom having simple lattice and volume density of 3×10 ²² /cm ³ assuming that the atoms are hard sphere with each atom touching its nearest neighbour.	8+7	CO1	BT1, BT2, BT3	
PAITT-B	2	 (a)Density of Cu is 8.94gm/cm³ and its atomic weight is 63.5. Calculate the Fermi energy of Cu by assuming that each atom gives one electron. (b) What is the temperature at which there is 1% probability that an energy state lying 0.2 eV below the Fermi level is empty 	7.5+7.5	CO2	BT3	un
PART-C	3	Discuss the vibrations of diatomic lattice and describe its optical and acoustic modes. What is the difference between the two branches and why are they named so? Analyse the vibrational motion of a diatomic periodic linear chain and obtain expressions for the vibration frequencies ω as a function of wavenumber k or Obtain the dispersion relation for elastic waves in a linear chain of atoms with nearest neighbour interaction and show that group velocity vanishes at the zone boundaries. Sketch the dispersion curve.	8+4+8	CO3	BT2, BT4	
	4	Show that Einstein's relation for the specific heat capacity per Kmol of a solid reduces to the classical value of $3R$ when $k_BT \ge h\nu$. Discuss the variation of Einstein's specific heat with temperature or Derive an expression for specific heat of solids on the basis of Debye model. How does Debye model differ from the Einstein model. Discuss the variation of Debye's specific heat with temperature.	9+6	CO3	BT2, BT4,	
PART -D	5	Provide detailed explanations for two methods used to reveal the structure of substances, namely (a) Nuclear Magnetic Resonance (NMR)	10+10	CO4	BT1, BT2, BT4	

	(b) XRD (c) Fourier Transform Infrared Spectroscopy (FTIR)			+	
6	Provide a concise explanation of non-bonding electron excitation and its relationship to UV spectra. How does delocalization of electron helped in getting a molecule to absorb UV-Visible radiation and displaying the UV-Visible absorption spectra?	5+10	CO4	BT2, BT3, BT4	

DEPARTMENT OF SCIENCES Physics Program

"End Term Examination, Dec 2023"

SEMESTER	V	DATE OF EXAM	20.12.2023
SUBJECT NAME	Digital Electronics	SUBJECT CODE	РНН302В-Т
BRANCH	Physics	SESSION	
TIME	180 min	MAX. MARKS	100
PROGRAM	B.Sc (H) Physics	CREDITS	4
NAME OF FACULTY	Dr. Shiv Kumar Dixit	NAME OF COURSE COORDINATOR	Dr. Shiv Kumar Dixit

Note: All questions are compulsory from part A and part B.

Set B

11000	ote. Itt questions are compaisory from part II and part II.			Det 1	,	
(Q.NO.	QUESTIONS MARKS CO ADDRESSED		BLOOM 'S LEVEL	PI	
	Q.1(a)	Implement the AND gate using NAND and				
		NOR gate only.	5	CO1	BT3	1.1.1
	Q.1(b)	What are inverting and non inverting	æ			is
		amplifiers? Explain the concept of virtual				
		ground in OP-AMP.	5	CO1	BT2	1.2.1
	Q.1(c)	Convert $(1011.01)_2 = ()_{10}$				
PART-A			5 .	CO1	BT4	1.3.1
RT	Q.2(a)	Verify the following				
-A		(i) $A + \overline{A} B = A + B$				
	Series :	(ii) $(A+B)(A+C) = A+BC$		N		
		(iii) Define DeMorgan's Theorem				
			7	CO2	BT3	1.2.1
	Q.2(b)	Define encoders? Explain 8 line to 3 line octal to binary encoder with truth table and logic circuit diagram.				
			8	CO2	BT1	1.1.1

A STATE		(i) Explain clocked JK flip flop with truth			1	
	Q.3	table and logic circuit diagram.				
	Qio	(ii) What is race around condition in JK flip		of .		
		flop? Explain how it occurs? Suggest a		9		
		method to overcome the race around				411
		difficulty.				
			4+8+8	CO3	BT2	1.1.1
	Q.4	Explain half and full subtractor with truth				
		table and diagram? Derive half adder using	7+8	CO3	BT3	2.1.1
PART-B		two input NAND gate.				
7	Q.5	(i) What are counters? Explain asynchronous				
æ		ripple counter with logic diagram and truth			la	
		table.			J.	
		(ii) Explain the important points of EPROM,			- 1	
		EEPROM and computer memories.	4+8+8	CO4	BT3	2.1.1
	Q.6	What are shift registers? Write their				
	至影廳	classifications and explain them with	5+5	CO4	BT3	2.1.1
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	diagram.		Herman I tell		
	0.5	Write four differences between parallel and	_	CO4	DTO	2.1.1
-Arriva	Q.7.	serial transfer.	5	CO4	BT2	2.1.1
		****** END	*****	*****	*	

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER.	I .	DATE OF EXAM/SESSION	11/12/2-23
COURSE NAME	ORGANIC CHEMISTRY-I	COURSE CODE	CHH503B (I)
PROGRAM	MSc (CHEMISTRY)	CREDITS	4
TIME DURATION	3 HOURS	MAX. MARKS	100
NAME OF FACULTY	Dr. S.K. Shukla	NAME OF COURSE COORDINATOR	Dr. S.K. Shukla

No. of Co.					P	
(Q.NO.	QUESTIONS	MARKS	CO ADDRES SED	BLOOM'S LEVEL	PI
		In general free radicals shows sp ² hybridization,		THE LIE WAY		4400000
		but the bridged structures of free radicals not				
	1(a)	follow the Sp ² hybridization. Why? Explain in				
PART-A		detail.	6 Marks	CO1	BT2	
T-A	10.	Differentiate the classical and non-classical				
	1(b)	carbocation with suitable examples.	5 marks	CO1	BT1	
	463	Define the term carbine. How to convert Benzene				
	1(c)	in to tropylium chloride	4 marks	CO1	ВТ3	
		Give detailed S_N1 mechanism and explain why				
	2(a)	retention product is lesser than inversion product.	5 marks	CO2	ВТ3	
		Which of the following compound gives nucleophilic				
P		substitution reaction. Explain with detailed reasoning.			*	
PART-B		CI H ₂ C CI				
Г-В	2(b)	112	5 Marks	CO2	BT4	
		(a) (b)				
	2(c)	Explain the S _N 1' mechanism with suitable example	5 Marks	CO2	ВТ3	8.4
	The second of	The second secon	O L'IGING	302	טוט	

	3 (a)	What are the substrate effects on the eliminationaddition reaction?	5 Marks	CO3	BT4	
	3(b)	Explain the benzyne mechanism in detail.	4 marks	CO3	BT2	
		What is the difference between the products in following reactions, if both follows the benzyne mechanism? NO2 NaNH ₂ / liq. NH ₃ ?				
PART-C	3 (c)	NaNH ₂ / liq. NH ₃ ?	6 Marks	CO3	BT4	
	4(a)	In pyridine, the arenium ion formed due to attack of the electrophile on all the three possible positions gives equal number of resonating structures, but the attack favours only on 3-position. Why? Explain with detailed chemical representations.	7 marks	CO3	BT3	
	.(0)	Write a note on π -complex intermediate with a suitable example.	7 Marks	C03	DOM	
	4.(c)	Alkyl group do not have any lone pair of electron to donate but it shows ortho-para directing behavior. Why? Explain with detailed chemical reactions	6 Marks	C03	BT1 BT4	

		How the C-C single bond influences the product	T .	T	T
	5(a)	formation in acetolysis of the exo- and endo-2	1	CO4	BT3
		norborinyl system.			
E .		Give detailed reason why 4-methyl-pent-3-enyl			
	5(b)	tosylate gives a cyclic product along with major	6 marks	CO4	BT4
		linear product, when it undergoes acetolysis.			
	5(c) .	What are the neighboring group participation?	6 marks	CO4	BT1
		Explain with suitable schematic representation.			
		Why it generally gives retention of product, instead			
PART-D		of the inversion product in SN2 mechanism.			
G-D		Deduce the suitable mechanism of the following			
		reaction.			
	6(a)	$\begin{array}{c c} CH_3 & 1. \text{ AgNO}_3 \\ \hline \\ CH_2CI & \\ \end{array}$	8 Marks	CO4	BT4
	6(b)	Write the role of negative charge acquired by oxygen in neighboring group participation with	7 marks	CO4	BT2
		suitable example.			
		****** END *****	*****	*****	

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCE

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	1	DATE OF EXAM/SESSION	14.12.2023 (I
COURSE - NAME	Inorganic Chemistry-I	COURSE CODE	CHH502B
PROGRAM	MSc	CREDITS	4
TIME DURATION	3 Hr	MAX. MARKS	100
NAME OF FACULTY	Dr. A. Jayamani	NAME OF COURSE COORDINATOR	Dr. A. Jayamani

Note: All questions are compulsory

Note.	Auq	uestions are compuisory		1	P"	
Q.N	10.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
P/	1A	Explain how Δ_0 and Nephelauxetic effect calculated theoretically with examples	5	CO1	3	
PART-A	1B	Write short not on classification of Jahn-Teller distortion with examples for each	5	CO1	4	
Α	1C	Explain the metal-ligand bonding in transition metal complexes using molecular orbital theory	5	CO1	2	10 MO 240
	2A	What are Russel-Saunders states and Spectroscopic ground states?	5	CO2	1	
PART-B	2B	A Cr³+ metal complex has strong transitions and λ_{max} at 431.03 nm, 781.25 nm, and 1,250 nm. Determine the Δ_{oct} and B for this complex. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	CO2	4	,
	20	Explain in detail on the classification of charge transfer spectra	5	CO2	5	

	p. 9						7 (2)
1	1	674	[CpMoCl ₂] ₂ obeys the 18 electron rule, the correct				
	T. BANT		structure of this compound is (atomic no. of Mo		80.00.00		
		3A	42)	4	CO3	3	
			How are organometallic compounds classified		***	ŀ	
		BEAU.	based on position, composition, hapticity and				
1		3B	bonding	8	CO3	2	
	SASSA.	100	Calculate the number of M-M bonds in [Ir ₄ (CO) ₁₂]				
			and $[Co_2Fe_2(CO)_{11}(\mu^4-PPh)_2]$ if both the				
		3C	compounds obey 18 electron rule.	6	CO3	5	
		50	(i) Draw the structure of (μ-Di- tert-butyl-				
J			silanediolato)bis-[bis-(η ⁵ -cyclo-penta-dien-				
	ד		yl)methyl-zirconium]				
			(ii) Write the name of the following				
	PART-C		organometallic compound				
ı	7		organometame compound				
ı	C		N_				
ı			N N				
d			PI—s			8	
			d a	_		Î	
			" « »		CO2	5	
П		3D		8	CO3	3	
			Illustrate the mechanism of hydroformylation				
Н			process using an organometallic compound		200	2	
ч		3E	catalyst	4	CO3	3	
d			Write short notes on				
1			(i) σ-bonded organometallic compounds	200	0		
		3F	(ii) π-bonded organometallic compounds	5	CO3	1	
ш			Elaborately explain on the preparation of metal	7	CO4	2	
Н		4A	carbonyls with reactions	7	CO4	2	
Н			Which of the following provides experimental		*		
d			evidence for π-back donation in a metal carbonyl				
		350	complex such as [Fe(CO) ₅]?				
d			a) The CO molecule has a vacant π^* MO.				
П			b) The C-O bonds in the complex are shorter than				
			in free CO.	.,		,	
-			c) Covalent Fe–C bonds are present in complex.				
1	P/		d) The wavenumbers corresponding to the C-O				
ı			stretches in the complex are lower than that for			8	
	7	4B	free CO.	4	CO4	4	
	PART-D		Explain the structure of metal carbonyl using				
	0	4C	proper illustration	6	CO4	2	
			Differentiate homoleptic and heteroleptic metal		,		
1		1000	carbonyls. Explain how to identify the above				
		4D	carbonyls using vibrational spectroscopy	8	CO4	3	
			Which complex among Ni(CO) ₃ PMe ₃ and				
-			Ni(CO) ₃ PF ₃ will have the higher CO stretching				
			frequency? Explain. Which one has the stronger	*			
		4E	M-CO bond?	5	CO4	3	
			Explain in detail on tertiary phosphine ligands				
		4F	acting as spectator and actor ligands	5	CO4	1	
1	THE RESERVE		I accomp an obcorrace, and accor infames	AND DESCRIPTION OF THE PERSON		HEROE CORCUE NO SEE	State of the last

END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCE

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	1	DATE OF EXAM/SESSION	14.12.2023 LI
COURSE · NAME	Inorganic Chemistry-I	COURSE CODE	СНН502В
PROGRAM	MSC - CHEMISTRY	CREDITS	4
TIME DURATION	3 Hr	MAX. MARKS	100
NAME OF FACULTY	Dr. A. Jayamani	NAME OF COURSE COORDINATOR	Dr. A. Jayamani

Note:	All ques	stions are compulsory			P	
Q.	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
10	1A	Differentiate Spectrochemical series and nephelauxetic series	5	CO1	3	
PART-A	1B	Compare the two mechanisms of Jahn-Teller distortion and justify the most appropriate distortion.	5	CO1	4	
À	10	Describe in detail on the postulates of molecular orbital theory with explanation for Transition Metal Complexes	5	CO1	2	
	2A	Explain in detail on selection rules for electronic transitions in transition metal compounds.	5	CO2	1	
PART-B	2B	For Ni ²⁺ octahedral complex, three absorption bands are observed at 921.66 nm, 568.18 nm and 353.36 nm, determine Δ_o and Racah parameter (B). $\Delta_o/B = 10 = 20 = 30 = 40$ E ₃ /B = 27 = 46 = 65 = 85 E ₂ /B = 16 = 29 = 41 = 51 E ₁ /B = 10 = 20 = 30 = 40	5	CO2	4	
	2C	The color of [MnO ₄]- is deep purple whereas [ReO ₄]- is colorless even though both the metals are in same group, Justify with explanation on the concept	5	CO2	. 5	

Explain in detail on classification of organometallic compounds with examples. Calculate the number of Ni-Ni blonds in [CpNi(p-PPh_3)]s complex which is obeying 18 electron rule. (i) Draw the structure of cis-(1-Butyl-3-[2-(phenyl-sulfam-lind) grain-linding-li				<u> </u>		
Calculate the number of Ni-Ni bonds in [CpNi(µ-PPh;)]2 complex which is obeying 18 electron rule. (i) Draw the structure of cis-{1-Butyl-3-{2-(phenyl-stallar,n-ylet-nyl-4-midazolin-2-yl-n² C-2,5'}di-chlorido-platinum(I) (ii) Write the name of the following organometallic compound (i) n³ Organometallic compound (i) n³ Organometallic compound (ii) n³ Organometallic compound (iii) Hydrogenation in catalyst Compare and contrast on the stability of \(\sigma\) bonded organometallic compounds and II bonded organometallic compounds with examples Explain the classification of metal carbonyls elaborately with examples (i) A Co ligands can adopt terminal, n² and n³ bonding modes, the amount of back donation depends on the bonding mode (iii) In lis spectra of Fe(CO)s, the absorptions assigned to M-Co stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by n³ CMR spectra of Fe(CO)s, the absorptions assigned to M-Co stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by n³ CMR spectroscopy 4C Describe in detail about the factors affecting back bonding in metal carbonyls 6 CO4 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homolepic and heteroleptic metal carbonyls from vibrational spectra. Explain with examples of bomolepic and heteroleptic metal carbonyls groups are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ***********************************						2000 4000
Compare and contrast of the following Selectron rule.		3A		8	CO3	1, 2
PART-O The structure of cis-(1- Butyl-3-[2- (phenyl-sulfan-yl)eth-yl]-4-imidazolin-2-yl-κ² (2,5')-di-chlorido-platinum(II) (ii) Write the name of the following organometallic compound (ii) η² Organometallic compounds and II bonded organometallic compounds and II bonded organometallic compounds with examples (iii) Hydroformylation catalyst (iii) A Colligand capanometallic compounds with examples (iii) Colligands (iii) Colligands (iii) Colligands (iii) Colligands (iii) Colligands can adopt terminal, μ² and μ² bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO) ₀ , the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ''C NMR spectroscopy (iv) How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples (iv) with exa					···	
Compare and contrast on the stability of σ bonded organometallic compound (ii) Hydroformylation catalyst (iii) Hydroformylation (iii) Compounds and II bonded organometallic compounds and II bonded organometallic compounds and (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO) ₅ , the absorption assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by 1°C NMR spectroscopy 4 CO4 4 Describe how the terminal about the factors affecting back bonding in metal carbonyls 6 CO4 2 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. 8 CO4 3 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. 6 CO4 3 Write down the distinct features of tertiary phosphine ligands 4 CO4 1					600	1
Chenyl-sulfan-y)-leth-yl]-4-imidazolin-2-yl-k² C²,S')-di-chlorido-platinum(II) (ii) Write the name of the following organometallic compound CH3 H3 CH3 S		3B		4	CO3	4
PARTO 3C CH ₃ H ₃ Chlorido-platinum(II) (ii) Write the name of the following organometallic compound Write examples of the following (i) η² Organometallic compound (ii) Hydrogenation in catalyst 3D (iii) Hydroformylation catalyst 7 CO3 2 Compare and contrast on the stability of σ bonded organometallic compounds with examples Explain the classification of metal carbonyls elaborately with examples 4A Explain the classification of metal carbonyls elaborately with examples Which statement is incorrect about CO ligands (i) Λ CO ligand can accept electron into its π* molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO) ₅ , the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by "3C NMR spectroscopy 4 CO4 4 4B by "3C NMR spectroscopy 4 CO4 4 Describe in detail about the factors affecting back bonding in metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. CO4 3 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands 4 CO4 1 ***********************************						
PART-O (ii) Write the name of the following organometallic compound Write examples of the following (i) η² Organometallic compound (ii) η² Organometallic compound (ii) η² Organometallic compound (ii) Hydrofermylation catalyst 7 CO3 2 Compare and contrast on the stability of σ bonded organometallic compounds and II bonded organometallic compounds and II bonded organometallic compounds with examples 8 CO3 3 Explain the classification of metal carbonyls elaborately with examples 7 CO4 2 Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π² molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iy) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹⁸ C NMR spectroscopy 4 CO4 4 Describe in detail about the factors affecting back bonding in metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ************************************						
PARTO Organometallic compound Write examples of the following (i) η² Organometallic compound (ii) η² Organometallic compounds and Π bonded organometallic compounds and Π bonded organometallic compounds with examples Explain the classification of metal carbonyls elaborately with examples Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π² molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by 19°C NMR spectroscopy Describe in detail about the factors affecting back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls row vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls groups are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ***********************************				/x		
PART TO PA						
SC	P/		VZ			
SC	R					
SC	H					
Write examples of the following (i) η² Organometallic compound (ii) η² Organometallic compound (ii) Hydrogenation in catalyst 3D (iii) Hydrogenation in catalyst Compare and contrast on the stability of σ bonded organometallic compounds and Π bonded organometallic compounds with examples Explain the classification of metal carbonyls elaborately with examples Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π² molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In It spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by μ²C NMR spectroscopy 4C Describe in detail about the factors affecting back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 4E with each of the control of t	Ċ		Zi Zi	1	342	25
(i) η² Organometallic compound (ii) η² Organometallic compound (ii) η² Organometallic compound (ii) Hydrogenation in catalyst (iii) Hydrogenation in catalyst Compare and contrast on the stability of σ bonded organometallic compounds and Π bonded organometallic compounds with examples Explain the classification of metal carbonyls elaborately with examples 7 CO4 2 Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π² molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In It spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by 14°C MMR spectroscopy 4 CO4 4 Describe in detail about the factors affecting back bonding in metal carbonyls 6 CO4 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ***********************************		3C		8	CO3	5
The component of the compound T						
(iii) Hydroformylation catalyst 7 C03 2				3		
The statement of the stability of σ bonded organometallic compounds and Π bonded organometallic compounds with examples Explain the classification of metal carbonyls elaborately with examples The statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π* molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹3C NMR spectroscopy Describe in detail about the factors affecting back bonding in metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyl groups are differentiated using vibrational spectroscopy with examples Write down the distinct features of tertiary phosphine ligands ***********************************						
The compare and contrast on the stability of \$\sigma\$ bonded organometallic compounds and \$\Pi\$ bonded organometallic compounds with bonded organometallic compounds with examples		22		7	CO2	2
bonded organometallic compounds and \$\Pi\$ bonded organometallic compounds with bonded organometallic compounds with bonded organometallic compounds with examples		3D			CO3	
bonded organometallic compounds with examples Explain the classification of metal carbonyls elaborately with examples 7 CO4 Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π* molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by 13C NMR spectroscopy 4B by 13C NMR spectroscopy 4C Describe in detail about the factors affecting back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyl groups are differentiated using vibrational spectroscopy with examples 4E vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ***********************************						
Explain the classification of metal carbonyls elaborately with examples Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π* molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹³C NMR spectroscopy 4B by ¹³C NMR spectroscopy 4 CO4 4 CO4 4 Describe in detail about the factors affecting back bonding in metal carbonyls 4C How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyl groups are differentiated using vibrational spectroscopy with examples 4E vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ***********************************				40		
Explain the classification of metal carbonyls elaborately with examples Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π* molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹³C NMR spectroscopy Describe in detail about the factors affecting back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls groups are differentiated using vibrational spectroscopy with examples 4E vibrational spectroscopy with examples 4F write down the distinct features of tertiary phosphine ligands ***********************************		3E		8	CO3	3
Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its \(\pi^*\) molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, \(\pi^2\) and \(\pi^3\) bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by \(^{13}\)C NMR spectroscopy 4C back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyl groups are differentiated using vibrational spectroscopy with examples 4E vibrational spectroscopy with examples 4F phosphine ligands 7		J.L				
Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π^* molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ^2 and μ^3 bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO)s, the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by 13 C NMR spectroscopy 4 CO4 4 Bescribe in detail about the factors affecting back bonding in metal carbonyls 6 CO4 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls sare differentiated using carbonyl groups are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ***********************************		4.Δ	1 *	7	CO4	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TA	Which statement is incorrect about CO ligands			
molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, \(\mu^2 \) and \(\mu^3 \) bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO) ₅ , the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by \(^{13}C \) NMR spectroscopy Describe in detail about the factors affecting back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic 4D metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 4E vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands ***********************************						
Cii) CO ligands can adopt terminal, μ² and μ³ bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO) ₅ , the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ½C NMR spectroscopy 4 CO4 4 Describe in detail about the factors affecting back bonding in metal carbonyls 6 CO4 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic 4D metal carbonyls. 8 CO4 3 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands 4 CO4 1 ***********************************			molecular orbital, this weakens the CO band			
bonding modes, the amount of back donation depends on the bonding mode (iii) In IR spectra of Fe(CO) ₅ , the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹³ C NMR spectroscopy 4			(ii) CO ligands can adopt terminal, μ^2 and μ^3			1
(iii) In IR spectra of Fe(CO) ₅ , the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹³ C NMR spectroscopy Describe in detail about the factors affecting back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls groups are differentiated using vibrational spectroscopy with examples 4E vibrational spectroscopy with examples Write down the distinct features of tertiary phosphine ligands ***********************************						
assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹³ C NMR spectroscopy 4 CO4 4 Describe in detail about the factors affecting back bonding in metal carbonyls 6 CO4 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls 8 CO4 3 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands 4 CO4 1 ***********************************						
wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by 13C NMR spectroscopy Describe in detail about the factors affecting back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using 4E vibrational spectroscopy with examples Write down the distinct features of tertiary phosphine ligands ***********************************			(iii) In IR spectra of Fe(CO) ₅ , the absorptions			
(iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹³ C NMR spectroscopy 4 CO4 4 Describe in detail about the factors affecting back bonding in metal carbonyls 6 CO4 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using 4E vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands 4 CO4 1 ***********************************						
4C back bonding in metal carbonyls 6 C04 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. 8 C04 3 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 C04 3 Write down the distinct features of tertiary phosphine ligands 4 C04 1 ***********************************	P/					ii j
4C back bonding in metal carbonyls 6 C04 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. 8 C04 3 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 C04 3 Write down the distinct features of tertiary phosphine ligands 4 C04 1 ***********************************	R					
4C back bonding in metal carbonyls 6 C04 2 How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. 8 C04 3 Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 C04 3 Write down the distinct features of tertiary phosphine ligands 4 C04 1 ***********************************	-	AD		4	. CO4	4
4C back bonding in metal carbonyls How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using 4E vibrational spectroscopy with examples Write down the distinct features of tertiary phosphine ligands ***********************************	Ö	TD	Describe in detail about the factors affecting			W. W.
How to elucidate the structure of metal carbonyls from vibrational spectra. Explain with examples of homoleptic and heteroleptic metal carbonyls. 4D metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples Write down the distinct features of tertiary phosphine ligands ***********************************		4C	back bonding in metal carbonyls	6	. CO4	2
with examples of homoleptic and heteroleptic metal carbonyls. Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples Write down the distinct features of tertiary phosphine ligands ***********************************			How to elucidate the structure of metal			
######################################						
Describe how the terminal and bridging carbonyl groups are differentiated using vibrational spectroscopy with examples 6 C04 3 Write down the distinct features of tertiary phosphine ligands 4 C04 1 ***********************************				65_0		
carbonyl groups are differentiated using vibrational spectroscopy with examples Write down the distinct features of tertiary phosphine ligands ***********************************		4D		8	CO4	3
4E vibrational spectroscopy with examples 6 CO4 3 Write down the distinct features of tertiary phosphine ligands 4 CO4 1 ***********************************				2		2
Write down the distinct features of tertiary phosphine ligands ***********************************					604	2
4F phosphine ligands 4 CO4 1 ************************************		4E		6	C04	3
**************************************				4	COA	1
END		4F	phosphine ligands	4		
			**************************************	*****	******	***

*****			******			

MANAV RACHNA UNIVERSITY SCHOOL OF SCINECES

MANAY FACHNA

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	18/12/2023
COURSE NAME	Physical Chemistry-I	SUBJECT CODE	СНН501В (I)
PROGRAM	M.Sc. Chemistry	CREDITS	4
TIME DURATION	180 Minutes	MAX. MARKS	100
NAME OF FACULTY	Dr. Arpit Sand	NAME OF COURSE COORDINATOR	Dr. Arpit Sand

ALERA DE	May I have				
Q.N	0.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
P	1	Give an account for the Debye-Hückel theory of strong electrolytes	5	CO1	ВТ3
PART-A	2	Calculate the ionic strength of a solution prepared by mixing 50 ml 0.2 M KNO ₃ , 20 ml 0.15 M K ₂ SO ₄ , 30 ml 0.05 M Cu(NO ₃) ₂ .	5	CO1	BT4
A	3	Discuss Gouy Chapman Diffusion Model in with figure	5	COI	BT2
P/	4	Discuss thermodynamics approach to CMC	5	CO1	ВТ3
PART-B	5	Give and account for surface active agents with suitable example of interface.	5	CO2	BT3
ω	6	With the help of graph explain krafft point in detail	5	CO2	BT4
	7	Deduce Expression for particle in 1D box and draw the graphs between various energy levels	5+5	CO3	BT4
PART-C	8	Explain the equation $\hat{A}(\chi_i) f(\chi_i) = pf(\chi_i)$ and term involved.	5	CO3	BT3
	9.	Discuss Normalized, Orthogonal, Radial and Angular wave function mathematically	5+5	CO3	ВТ3
	10	Show that [Â,Ê]=- [Ê, Â]	5	CO4	BT2

	11	Show relation for first few Harmite up to 5	5	CO4	BT3
PA	12	Discuss application of Perturbation method in case of He atom particle in 1D, 3D and perturbed harmonic oscillator	5+5+5	CO5	BT3
PART-D	13	Calculate energy in ID Box with the help of variation method	5	CO5	ВТ3
	14	Deduce expression for Rodrigues formula for the Hermit polynomials.	5	CO5	BT4
	16	Deduce expression for Recursion relation.	5	CO5	BT4
	17	Write a short note on approximation method	5	CO5	BT4

END

WORNER STEEN

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End-term Examination, Dec.-2023"

FC ABBELC:			1 1 1 1
SEMESTER	I .	DATE OF EXAM	
COURSE NAME	Analytical Chemistry	COURSE CODE	CHH504B
PROGRAM	M.Sc. Chemistry	CREDITS	4
TIME	3 hrs	MAX. MARKS	100
DURATION			Dr. Pradeep K. Varshney
NAME OF	Dr. Pradeep K.	NAME OF	Dr. Pradeep K.
FACULTY	Varshney	COURSE	Varshney Protection
FACULTI	,	COORD.	g and a constant

Note: Part A is compulsory. Part B- Questions will be of descriptive type or

numerical.

Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Which analytical technique is used to do quantitative analysis of soil samples.	2	CO1	BT1	
	1(B)	Write the role of atomization chamber in Atomic Absorption Spectroscopy.	2	CO1	BT2	
	1(C)	Write major steps of a typical Quantitative sample analysis.	2	CO1	BT3	
	1(D)	How can you decide precision and accuracy in your experimental work?	2	CO2	BT4	
парт	1(E)	Calculate the bond order of N_2 and N_2^{2-} .	2	CO2	BT1	
PART- A	1(F)	Write full form of ICP-OES. How many elements can be detected at a time?	2	CO2	BT1	
	1(G)	Why hyphenated techniques are prefered by industries and research organization.	2	CO4	BT4	
	1(H)	Define an auger electron? Write its significance.	2	CO2	ВТ3	
	1(I)	Write any two remarkable differences between GC-MS and LC-MS.	2	CO2	BT2	
	1(J)	What is the role of plasma in hyphenated techniques?	2	CO4	BT3	
PART-	Q2(A)	Draw a block diagram of Atomic Emission Spectroscopy (AES).	5	CO1	BT3	
В	2(B)	Distinguish between AAS and AES. Write any two limitations	3+2	C01	BT4	

				T	
	of AAS.		#		
	What are Auger electrons?	5	CO2	BT5	
	Which surface chemical analysis				
	is similar to Auger electron				
Q3(A)	spectroscopy. Explain.				
	XPS and ESCA instruments are	5	CO2	BT3	
	same or different. What				
	information is obtained from				
3(B)	these instruments?				
(-)	A "photon' shows the photoele	5	CO1	BT2	
Q4(A)	effect? Explain with diagram.				
Q1(1)	If you are given a chance to setup	5	CO1	BT4	
	an instrumentation centre, which		00-	5.55	
	five equipments you will				
	purchase first. What information				
4(B)	you will get from each.				
4(D)	If you are given a chance to work	5	CO1	BT4	
	in a pharmaceutical industry,	3	COI	DIT	
	what strategy you will adopt to				
	Design a drug using natural				
05(4)	resources for the welfare of				
Q5(A)	mankind.		602	DTT	-
	Which analytical instruments you	5	CO2	BT5	
	will use to test your drug				
	synthsized using natural				
5(B)	resources and why?.		***		-
	Explain the principle of atomic				
	absorption spectroscopy. Write	0			
Q6(A)	limitations of AAS?	5	CO3	BT2	-
	Briefly describe the types and	5			
	advantages of hyphenated				
	techniques used with mass			***	
6(B)	spectrometry.	vt.	CO3	BT2	
	What essential requirements must	5			
	be satisfied in a good interface to				
Q7(A)	the mass spectrometer?		CO3	BT2	
	Explain the principle of X-ray		CO4	BT3	
	Diffraction. Write its				
7(B)	applications.	5	12		
	Compare between SEM and	5	CO4	BT3	
Q8(A)	TEM analytical techniques.		: 4		
40(1.1)	What is the principle of	2+1+2	CO4	BT3	
	Voltametry. Why three electrodes				
	are used in it. Write applications				
8(B)	of cyclic voltametry.				İ
O(D)	What information is obtained		CO4	BT3	
			CO4	013	
12.3	from Capillary				
00(4)	electrophoresis.Explain its	2,2			
INGIAI	principle with a diagram.	2+3			-
Q9(A)		2 2	001		
9(B)	Write Principle and applications of SEM.	2+3	CO4	BT3	

THE RECEPTION OF THE PROPERTY
MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM/SESSION	12.12.2023 [II
COURSE . NAME	SYMMETRY AND GROUP THEORY	COURSE CODE	СНН601В
PROGRAM	M.Sc. Chemistry	CREDITS	4
TIME DURATION	180 min	MAX. MARKS	100

NAME OF Dr. Roopa Rani
FACULTY

Dr. Roopa Rani
COURSE
COORDINATOR

Dr. Roopa Rani
COURSE

				/	D ^v I	
	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	F
		a) Define the order and sub-order of a group.	2	CO1	BT1	
		b) Using C ₆ H ₆ as an example, discuss the concept of equivalent symmetry elements, operations and atoms.	4	CO2	BT2	
PART-A	Q1	c) Explain the following terms i. Character ii. Similarity transform iii. Dimension	3	CO2	ВТ3	
		d) Identify the point group of – IF ₇ molecule.	3	CO1	BT4	
		e) Justify the statement "dipole moment value vary with the symmetry of a molecule". Use suitable example	3	CO2	BT4	
PA		a) Reduce the following representations into irreducible representations referring to the character table of C_{2v} point group E C2 $\sigma(xz)$ $\sigma(yz)$ 10 -4 -10 4	3	CO3	BT2	
PART-B		b) $C_{3\nu}$ point group comprises a group, illustrate this and define the symmetry elements present in this point group using any one suitable example.	4	CO4	BT1	
	Q2	c) How many irreducible representations shall be present in $C_{2\nu}$ point group and why?	2	CO4	BT4	

1		1					
))			 d) Consider a three atom system of D_{3h} point group and refer to the image below – 		3		
			Symmetry elements Reducible representation $\frac{E 2C_3 3C_2 \sigma_h 2S_3 3\sigma_v}{3 0 -1 -3 0 1}$ Irreducible components: $A_2'' + E''$ Determine at least one wave function using the above data.	3	CO4	BT6	
)			e) Explain mulliken symbols for nomenclature of irreducible representations.	3	CO3	BT2	
			(a) Consider a three atom system, generate the secular equation, secular determinant and matrix only, to evaluate the energy of the system. Also write the integral approximations introduced by Huckel.	6+4	CO4	BT6	
	PART-C	Q3	b) Briefly elaborate the difference among the concept of VBT and MOT. Which was more useful and why?	5	CO4	BT4	
	T-C	Q3	c) What do you mean by energy terms of any electronic configuration? How the energy terms are being written? Explain the splitting of energy terms of S, P, D and F terms as per mulliken.	3+3+4	CO5	. BT5	
			d) How many types of co-relation diagrams have u studied? Draw the co-relation diagram for d ³ configuration. Explain its utility.	5+5	CO5	BT5	
		Q4	a) Briefly explain the concept of degrees of freedom and their classification. Construct the hybridization of H_2O molecule using the principles of group theory. Write all the steps involved.	6+4	C06	BT5	
	PART-D		b) Analyze the vibrational degrees of freedom for any molecule of CH ₄ point group and classify the vibrational modes into IR and Raman active signals.	5+5	C06	BT5	
	Γ-D		c) Differentiate and demonstrate perpendicular and parallel ways of pi bond formation in a molecule. How the hybridization of these molecules can be determined using group theory? Take example of BF3 molecule. Refer character table of D3h point group.	6+4	C06	BT1	
9			d) Illustrate, how quantum mechanics can be used to determine the angle between two bonds in CH4 and NH3 molecule?	5.	CO6	BT5	

END

D_{3h} character table

D_{3h}	Е	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_{v}$		
A_{I}'	1	1	. 1		1	1		$x^2 + y^2, z^2$
$A_2{}'$	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1 -	0	(x, y)	(x^2-y^2,xy)
A_I "	1	1	1	-1	-1	-1		* *
A_2 "	1	1	-1	-1	-1	1	Z	
$E^{\prime\prime}$	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

T_d character table

Table 1: Character table for T_d point group

					DIC I.	01101	(6 1	
	T_d	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$	-	
	A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
						-1		
	E	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
į.		1					(R_x, R_y, R_z)	
	T_2	3	0	-1	-1	1	(x,y,z)	(xz, yz, xy)

MANAY KACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCE

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	ŢŢĪ	DATE OF EXAM/SESSION	16.12.2023 (7
COURSĘ NAME	Inorganic Special-I Organometallic Chemistry of Transition Metals & Bio Inorganic Chemistry	COURSE CODE	СНН608В
PROGRAM	M.Sc. Chemistry	CREDITS	4
TIME DURATION	3 Hr	MAX. MARKS	100
NAME OF FACULTY	Dr. A. Jayamani	NAME OF COURSE COORDINATOR	Dr. A. Jayamani

Note: All questions are compulsory

Q.	NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	
J	1A	Explain the η, κ and μ conventions in nomenclature of organometallic compounds with examples	5	CO1	2	
PART-A	1B	Compare the properties of organometallic compounds with carbonyl ligands and phosphine ligands	5	CO1	4	
Α	1C	Justify salient features in structure, bonding and stability of organometallic compounds of Butadiene, cyclobutadiene ligands	5	CO1	2	
	2A	Discuss on the different methods on preparation of d-Block metal carbonyls	5	CO2	1	
PART-B	2B	The complex [Cr(CO) ₄ (PPh ₃) ₂] has one very strong IR absorption band at 1889 cm ⁻¹ and two other very weak bands in the CO stretching region. What is the probable structure of this compound? (The CO stretching frequencies are lower than in the corresponding hexacarbonyl because the phosphine ligands are better donors and poorer π acceptors than CO.)	5	CO2	4	

1000						
1	2C	Write short note on (i) 1,1-Migratory insertion reactions (ii) Hydride eliminations				
			5	CO2	2	
	3A	Explain elaborately on existence of essential and non-essential elements in bio-systems	6	CO3	1, 2	
	3B	Compare the roles of s-block elements and 3d elements in bio-systems	7	CO3	5	
PART-C	3C	(i) Discuss in detail about specific structural features used in Designing of chelating agents for medicine. (5) (ii) Illustrate a chelating agent of your own that could interact on various sites of biomolecules and probably used in medicine (3)	8	CO3		
	3D	Write short note on environmental bioinorganic chemistry	6	CO3	2,4	_
	3E	Explain in detail about the mechanism of oxygen transport using metal ions in human body with proper illustrations	8	CO3	2	
	4A	How is competitive and non-competitive inhibitors influence on the activity of enzymes? Explain with proper illustrations	8	CO4	3	
1.00	4B	Explain the role of metalloprotiens in biosystems	5	CO4		
PART-D	4C	In what way the metal ions involve in the replication and transcription process of Nucleic acids, explain in detail.	7	CO4	4	
D	4D	Explain in detail about the factors that influence on stability of DNA	7	CO4	3	
		Writ short notes on (i) Neurotransmitter (ii) bioinorganic chips and biosensors	3.		y)	
	4E	To A to Supplementary State of the State of	8	CO4	1	

END

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

			Ena Semester Examina	acion, De				
SE	MESTER	2	III		E OF M/SESSIO	N	16.1	2.2023 (II)
СО	URSE N	AME	Organic Special-I: Statistical Stereochemistry & Asymmetric Synthesis	COU	RSE COD	E	СНН	613B
PR	OGRAM		M.Sc. Chemistry	CRE	DITS		4	
TIN DU	ME RATION	V.	3 Hours	MAX	. MARKS		100	N
FA	ME OF CULTY		Dr. Ekta Rawat	N 0.000 - 201600110	E OF COU RDINATO		Dr. E	kta Rawat
			s are compulsory.					Dand.
Q.I	10.	QUES	TIONS		MARKS	CO ADDR	ESSED	BLOOM'S LEVEL
	Q1(A)	stereoi	ent on the statement that a molecule with somer is always chiral but with more than chiral. Explain with suitable examples.		5	COI		BT2
P	Q1(B)	Write s (i) Epir	short notes on:	(20)	2.5+2.5=5	CO1		BT2
PART-A	Q1(C)	Specify configu	y the CIP priorities of the substituents and uration in the following compounds: H CD2CD3	assign	2.5+2.5=5	COI		BT3
PART-8	Q2(A)		Br & Br & Br C ₂ H ₅		3+3=6	CO2		BT4

	Q2(B)	Draw the structures of the following compounds: (i) Fischer projection of (2S,3R)-2,3-Butanediol	2+2=4	CO2	BT4
		(ii) (S)-2-Butanamine			
	Q2(C)	Identify relative configuration of the following: (i) HOH ₂ C _{IIIII} H	2.5+2.5=5	CO2	BT3
		ОН		ı	
		HO OHC H			b
		(ii) NH ₂			
		н——соон			-
		H——NH ₂ CH ₃			6
	Q3(A)	Explain the following term with examples: (i) Enantiomeric excess (ii) Stereospecific reaction	2+3=5	CO3	BT2
	Q3(B)	Why Bisect form is preferred over eclipsed form in Cram's Rule? On the basis of Cram's Rule, predict which form of the	2+8=10	CO3	BT4
		diastereomer will predominate?			
		C ₂ H ₅ LiAlH4 H2O/H+			
	Q3(C)	Determine whether the two protons present in each compound are homotopic, enantiotopic, or diastereotopic:	2.5x4=10	CO3	BT3
PART-C		H ₃ C _{IIIIII} Br	e e		sc pt
		Br Br H			
		HIIIII H			
		CI H H			
STATE OF STA		ОН			,

	Q3(D)	Assign prochirality to the given molecules (w.r.t. H _a):	2.5x4=10	CO3	BT3
		Вг СООН			
9		нон	,		
		Н _а		190	
		н——он	18 18 18		
		На Н			
		H _a H COOH H _a H			
		H ₂ Nimin H			
	Q4(A)	What role does (±)-diethyl tartarate paly in the	3+7=10	CO4	BT4
	2 ((12)	configuration of product in Sharpless asymmetric			
		epoxidation.			
		Discuss the Sharpless asymmetric epoxidation of allylic alcohol to obtain both enantiomers of the product epoxide.			
	Q4(B)	Give applications of Noyori catalyst for-	3.5+3.5=7	CO4	BT3
		(i) Isomerisation of allylic amines to produce menthol			-
P		(ii) Introducing chiral centre β-ketoester.			
PART-D	Q4(C)	How does Ender's chiral auxiliaries SAMP and RAMP results into the formation of different stereoisomers in the	8	CO4	BT4
D		asymmetric α-alkylation of aldehydes and ketones.			
		Outline the mechanism.			
	Q4(D)	(i) Why IPC ₂ BH have the enantioselectivity higher	5+5=10	CO4	BT4
		for cis-alkenes compared to trans-alkenes.		5	
1000		Explain with transition state.	×	41	
-		(ii) Explain the mechanism of enantioselective hydroboration using chiral borane IPC ₂ BH.			

DEPARTMENT OF SCIENCES (Chemistry)

End Tum Examination, Dec-2023"

		DATE OF EXAM	19.12.2023
SEMESTER SUBJECT NAME	Photochemistry & Pericyclic Reaction	SUBJECT CODE	СНН614-В
BRANCH	Chemistry	SESSION	II.
TIME	3 hrs	MAX. MARKS	100
PROGRAM	MSc	CREDITS	1 4
NAME OF FACULTY	Sangita Banga	NAME OF COURSE COORDINATOR	Sangita Banga

Note: Part A: Each question is of 10 marks, attempt any two of three.

Menadapahi

Part B: Each question will be of 20 marks in Part B.

Fari B. Each question will be by 20 marks in 1 and 2.				CO	BLOOM'S	DI.
Q.	.NO.	QUESTIONS	MARKS	ADDRESSED	LEVEL	Pl
	1(A)	Explain why NO ₂ is meta directing for photo induced aromatic nucleophilic substitution reaction.	2.5	CO2	BT2	2.1.1
	1(B)	Trans isomer are geometrically more stable then why the ratio of Cis-isomer would always be higher than Trans in mixture on irradiation	2	CO2	вт2	2.1.1
	1(C)	How pericyclic reaction differs from normal reaction. Give some important characteristics of pericyclic reaction.	2.5	CO4	BT1	1.1.1
PART-A	1(D)	Give reason for your answer with suitable example, wherever applicable (i) α Cleavage of cyclobutanone is 10 times more efficient as compared to cyclopentanone. (ii) Photoenolization is favored by ortho not para substituted aryl ketones	3	CO2	BT1	5.1.1
	2(A)	Explain the mechanism of dimerization of 1,3-butadiene in solution in the presence of acetophenone and benzil sensitiser	2.5	CO2	BT2	2.1.1
	2(B)	What is Paterno Buchi reaction? Give an example in support of your answer.	2.5	CO2, CO3	BT2	5.1.1
	2(C)	What is meant by conrotatory & disrotatory movement? Explain with example.	2.5	CO4	BT2	5.1.1

	317	4		-	(4)	790	
		2(D)	Write a note on the photodimerization of α-β unsaturated ketones Suggest mechanism for the reaction given below	2.5	CO2, CO3	BT2	2.1.:
0000		3(A)	1 + 1 200°S	2.5	CO2	ВТЗ	1.1.1
J. J		3(B)	Complete the reactions: (i) hv Ph hv	2.5X3	CO3, CO4	BT3	9.1.2, 11.2.
1			(iii) C-COOCH ₃ hv C-COOCH ₃		0		
SF		Q4(A)	[1,3] Sigmatropic shift of hydrogen is photochemically allowed whereas [1,5] Sigmatropic shift of can occur thermally. Explain why?	5	CO4	BT3	5.1.1
11		4(B)	Write a note on the following: (i) Cope rearrangement (ii) Claisen rearrangement	5	CO4	BT3	2.2.1
	PART-B	4 (C)	(iii) $CH-CH=CH-CH=CH$ CH-O-D $CH=CH-CH=CH$ $CH=O$ $CH=O$ $CH=O$		CO4		9.1.2, 10.3.1
tree			******				

		T			
	(bv) () () () () () () () () () (
Q5(A)	With the help of FMO show that [2+2] cycloaddition reaction is photochemically allowed whereas [4+2] cycloaddition is photochemically forbidden.	5	CO4	ВТ3	2.2.1
5(B)	With the support of suitable example explain: 1,3 dipolar reactions & Cheleotropic reactions.	5	CO4	BT2	2.2.1 10.3.
5(C)	Predict whether the [4+2] cycloaddition could be photoinduced if the dienophile, instead of diene were the excited reactants. Explain your answer.	5	CO2, CO4	BT4	2.2.1
5(D)	With the help of Huckel Mobius approach explain under what conditions (4n+2) pi electron system will be thermally allowed and photochemically allowed.	2.5	CO2, CO4	ВТ3	2.2.1
5(E)	Draw the HOMO of ground state in the case of a conjugated diene and triene and compare the HOMO states of both the molecules	2.5	CO2, CO4	BT3	2.2.1 10.3.
Q6(A)	Complete the reaction given below& give proper explanation for your answer. B A B A C R H C R R H C R R H C R R R H C R R R R R R R R R R R R	4	CO2, CO4	BT4	2.2.1
6(B)	Predict the stereochemistry of products for the following reaction. (i) (ii) (iii) (iii) (iii) (iiii) (iiiii) (iiiii) (iiiii)	6	CO2, CO4	BT3	2.2.1

	j.				
	What type of cycloaddition occurs in Reaction [1]? Draw the product of a similar process I Reaction [2]. Would you predict that these reactions occur under thermal or photochemical conditions? CH2				
6(C)	+ CH2 CHCOOMe			ж с	
	[1]	3	CO2, CO4	BT4	2.2.1 10.3.
+	COOMe				
	C_6H_5 C_6H_5 C_6H_5		÷	0	
	How would you carry out conversion of cis 3,4-dimethyl cyclobutene to trans 3,4-dimethyl cyclobutene? Explain & give mechanism.		,		
6(D)	CH3 CH3 CH3	5	CO2 &CO3	BT5	2.1.2
6 (E)	Give product for the following reaction:	2	CO2 &CO3	BT3	2.1.2
	Explain the mechanism for reaction given below:	*			
	hv hv	25 953		·	
Q7(A)	hv	5	CO2, CO4	BT3	2.4.2

7(B)	With the help of FMO approach, explain whether the following reaction will be allowed thermally or photochemically.	5	CO4	BT4	2.3.1
7(C)	Write the products of following electrocyclic reactions & write whether the reaction will proceed in conrotatory or disrotatory fashion. Also give the stereochemistry of the products. (i) CH3 (ii) CH3 H CH3 H CH3 H CH3 H CH3 H CH3 CH3 (iv)	2.5X4	CO4, CO3	BT4	2.3.1, 10.3.1
	CH3 H CH3 H OR		d		
Q7(A)	In case of ring closure reaction of 1,3-butadiene, explain the selection rules by Huckle Mobius method & Woodward Hoffmann Rule.	5	CO4	ВТ3	2.4.2
7(B)	ho o	4	CO2	BT4	2.1.2
7(C)	With the support of proper diagram explain the formation of Endo product as main product during cycloaddition.	2.5	CO2	BT2	2.1.1

7(D)	Reactivity of Diels Alder reaction increases by introduction of electron withdrawing substituent in dienophile and electron donating groups in diene. Give reason for your answer through an example.	2.5	CO2	BT2	2.1.1
7(E)	Predict the product formed in the given reaction: (i) (ii) (iii) (iii) (iii) (iii) (iii)	2.5X2	CO3 & CO4	BT3	2.2.1 10.3.

END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES (PROGRAM-CHEMISTRY)

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM/SESSION	19.12-2023 (II)
COURSE · NAME	Supramolecular Chemistry & Metal Clusters	COURSE CODE	СНН609В
PROGRAM	M.Sc Chemistry	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Harsha Devnani	NAME OF COURSE COORDINATOR	Dr. Harsha Devnani

Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
	1	Give an example of chelate effect.	3	CO1	BT2
P/	2	Specify the characteristic properties of a guest molecule.	3	CO1	BT1
PART-A	3	Illustrate cavitand complex formation using a schematic.	3	CO1	BT3
	4	Distinguish between spherands and cryptands.	3	CO1	BT4
	5	Explain selectivity of crown ethers for K+ ion.	3	CO1	BT4
	6	Differentiate between crystal self-assembly and solution self-assembly.	3	CO2	BT2
PART	7	Define synthon and support with an example.	3	CO2	BT2
B	8	Write the equations for crystal growth and explain critical nucleus size.	3	CO2	BT2
100	9	Comment on acidity of hydrogen bonding.	3	CO2	BT4

			_			
	10	What are homotopic and heterotopic receptors?	3	CO2	BT1	
	11	Draw and discuss orthosilicates and neosilicates.	5+5	CO3	BT4	
ים	12	How can borazines be prepared?	8	C03	BT2	
PART-C	13	Present the chemical properties of phosphazenes with help of suitable reactions.		000		
C		Apply the Wade's rule to predict the structure of following compounds: B ₅ H ₉	8	CO3	BT2	
FEG	14	$C_2B_9{H_{11}}^{2-}$ CPB ₁₀ H ₁₁	3+3+3	CO3	BT3	
	15	Present the classification of clays and highlight pillared clays.	5+5			
של		mgmight phiared clays.	5+5	CO4	BT1	
PART-D	16	Discuss the synthesis of pillared clays.	8	CO4	BT2	
J	17	How can the surface area, pore size and distribution be evaluated for zeolites?	3+3+3	CO4	BT3	
March Co.		********				
	18	With respect to catalysis specifically, discuss the application of reolites	O	604	75.	
李宗冰湖	18	discuss the application of zeolites.	8	CO4	BT4	
沙中水平	HEALT WES	With respect to catalysis specifically, discuss the application of zeolites.	SIEVEL		BT4	
李字字章	HEALT WES	discuss the application of zeolites.	SIEVEL		BT4	

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEDARTMENT OF SCIENCES

and Biological	COURSE C	ODE	CYYYYY	
		ODE	СНН611В	
nemistry (Inorganic sp.)	CREDITS		4	
•	MAX. MAF	RKS	100	
ΓA RAWAT	NAME OF COORDIN		DR. EKTA	RAWAT
ompulsory.			/	South
	HE RES	MARKS	CO ADDRESSED	BLOOM'S LEVEL
nean by back biting mechanish hesis polymerization (ROMP)	m in ring ?	5	CO1	BT3
alytic cycle of Wacker proces	S.	6	COI	BT3
tween singlet and triplet carbo bles.	ene with	4	COI	BT2
nechanism of olefin metathesi	s reactions.	4	CO2	BT2
ail applications of using I an Grubb's catalyst.	d II	6	CO2	BT3
What is the role of electron rich metals in C-H activation?		5	CO2	BT3
abeled diagram of the catalytic ing. coupling is preferred over Sor		6+8=14	CO3	BT4
??			1002	DT4
epict the mechanism of the Heck reaction. Differentiate tween inter and intra molecular Heck reaction. Give amples of each.		8+6=14	CO3	BT4
licate the features of Hiyama coupling and the sequence reaction.		7	CO3	BT3
nature and significance of the loes LD50 mean in this curve?	dose-response	8	CO4	BT4
three major chelating liga Describe any two:		8	CO4	BT3
ct does lead's chemical similaribute to the toxicity of lead?	Which organ in	8	CO4	BT4
uss the major routes and site	es of exposure,	11	CO4	BT4
	ost susceptible to lead poisoni uss the major routes and site and elimination of cadmium in	ost susceptible to lead poisoning? uss the major routes and sites of exposure, and elimination of cadmium in the body. ******	ost susceptible to lead poisoning? uss the major routes and sites of exposure, and elimination of cadmium in the body.	ost susceptible to lead poisoning? uss the major routes and sites of exposure, 11 CO4 und elimination of cadmium in the body.

UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF CHEMISTRY

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM	21.12.2023/11
COURSE NAME	Modern Organic Synthesis Techniques	COURSE CODE	CHH615 B
PROGRAM	M.Sc. Chemistry (Organic)	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Vinod Kumar	NAME OF COURSE COORDINATOR	Dr. Vinod Kumar

Note: Part A is compulsory. Part B- Questions will be of descriptive type or numerical.

Ç	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PART-A	1(A)	What is the final organic product of reaction 1. CH ₃ OH, H ⁺ 2. LiAIH ₄ 3. H ⁺ 4. PCC 5. (PH ₃)P=CH ₂ ?	4	CO1	BT4	*
	1(B)	State 2 coupling reaction with suitable examples.	4	CO1	BT2	
	1(C)	How biaryl product is synthesized?	3	CO1	BT4	
	1(D)	Demonstrate the reactivity difference between Lithium aluminium hydride or Sodium borohydride.	4	CO1	BT4	
Α	2(A)	Explain reductive cleavage of C=O double bond.	4	CO2	BT4	
	2(B)	State suitable reagent for synthesis of diketone.	4	CO2	BT4	
	2(C)	Illustrate a method to oxidize C level 3 to C level 4.	3	CO2	BT2	, , , , , , , , , , , , , , , , , , ,
	2(D) ·	Evaluate the 2 best methods for synthesizing selectively aldehyde from primary alcohols?	4	CO2	BT4	

-			,		
	3(A)	Draw the mechanism for the reaction of sulphur ylide with α,β-unsaturated aldehydes and ketones?	5	C03	BT4
		Discuss the stabilized and unstabilized P ylides with suitable example and propose the application of P-ylides in organic		9	
	3(B)	synthesis.	5	CO3	BT3
	3(C)	Why crown ethers are very important in medicine and organic synthesis.	5	CO3	ВТЗ
	4(A)	What are the types of phase-transfer catalyst, Explain in detail?	5	CO3	ВТЗ
	4(B)	Design synthesis of alkenes with high regioselectivity and stereoselectivity.	5	CO3	BT4
	5(A)	Which is more reactive enol or enolate and why?	3	CO3	BT4
	5(B)	How can you differentiate the kinetically stable and thermodynamically stable enols?	4	C03	BT4
	A. Kenja	Underwhich and dition VM OA in all 11			
	5(C)	Under which condition KMnO4 is soluble in benzene?	2	COS	DWO
70	3(0)	Which reaction will not provide a synthesis	3	CO3	BT2
PART-B		of the		20	
		(a) $MgBr$ + $\frac{1) Et_2O}{2) H_3O^+}$			
		(b) $+$ $\frac{1) \text{ Et}_2\text{O}}{2) \text{ H}_3\text{O}^+}$ (c) $ -$			
	6(A)	(d) + CH_3MgI $\frac{1) Et_2O}{2) H_3O^+}$	7	CO4	BT4
	6(B)	What is retrosynthetic route? Discuss the role of functional group interconversion (FGI) in retero-synthesis with suitable examples?	2+8	CO4	BT3
Mag.	11			30.1	210
170	7(A)	Which combination of reagents is wrong for disconnections (a)-(d) in the following	8	CO4	втз

	Ph (a) (b) (c) (d)				
	(a) + CI S S Br				
	(c) Ph OEt Br				
	(d) + BrMg				
	What is retrosynthetic analysis? Propose a retrosynthetic analysis of the following compound. Your answer should include both the synthons, showing your thinking, and the reagents that would be employed in the actual synthesis.				
7(B)	CO ₂ H CO ₂ H CO ₂ H	2+8	CO4	BT4	

MANAY RACHNA UNIVERSITYZ

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	Ist	DATE OF EXAM	18.12.2023 (I)
COURSE NAME -	Differential Equations	COURSE CODE	MAH503B
PROGRAM	M.ScMathematics	CREDITS	4
TIME DURATION	3 Hours	MAX. MARKS	100
NAME OF FACULTY	Dr. Advin Masih	NAME OF COURSE COORDINATOR	Dr. Y K Sharma

Note: All Questions compulsory.

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	ΡI
	1(A)	Apply Picard's method, find the second iteration of the IVPs $\frac{dy}{dx} = x + y^2$, Where y (0) = 0.	5	CO1	ВТ3	1.1.1 1.1.2 2.1.1 2.2.1
PART-A	1(B)	Convert the linear differential equation in to a system of first order equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5 y = 0$	5	CO1	BT1	1.1.1 1.1.2 2.1.1 2.2.1
	1(C)	Show that $f(x,y) = x^2 + y^2$ on R: -a< x< a, -b < x < b, satisfies the Lipchitz's conditions.	5	CO1	BT2	1.1.1 1.1.2 2.1.1 2.2.1
PART-B	1(D)	Determine nature of the critical point (0, 0) of the system $\frac{dx}{dt} = x + 3y$; $\frac{dy}{dt} = 3x + y$.	5	CO2	BT2	1.1.1 1.1.2 2.1.1 2.2.1
	1(E)	Explain autonomous system.	5	CO2	BT2	1.1.1 1.1.2 2.1.1 2.2.1

PERM		Discuss the nature of the nonlinear system	1	Î	ľ	NP
	1(F)	$\frac{dx}{dt} = 4x + 2y - 4xy; \frac{dy}{dx} = x + 6y - 8x^2y$	5 -	CO2	BT1	1.1.1 1.1.2 2.1.1 2.2.1
P	Q2	Apply Monge's method, solve $r = a^2t$.	12	CO3	ВТ3	1.1.1 1.1.2 2.1.1 2.2.1
PART-C	Q3	State and derive the method of separation of variables.	11	CO3	BT3	1.1.1 1.1.2 2.1.1 2.2.1
	Q4	Find the complete integral of $p_3x_3(p_1+p_2)+x_1+x_2=0.$	12	CO3	ВТЗ	1.1.1 1.1.2 2.1.1 2.2.1
PART-D	Q 5	Find the solution of the problem $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for the boundary conditions $u(0, y) = u(a, y) = u(x, 0) = 0$ and $u(x, b) = f(x)$.	12 -	CO4	BT3	1.1.1 1.1.2 2.1.1 2.2.1
D	Q6	Derive the Drichlet interior problem for a circle.	11	CO4	BT3	1.1.1 1.1.2 2.1.1 2.2.1
	Q7	State and prove "One dimensional wave equation".	12	CO4	BT1	1.1.1 1.1.2 2.1.1 2.2.1

END

MANAV RACHNA UNIVERSITYZI

MANAV RACHNA UNIVERSITY **SCHOOL OF SCIENCES**

DEPARTMENT OF SCIECNES (Program-Physics) "End Term Examination, Dec-2023"

SEMESTER	1 st	DATE OF EXAM/SESSION	14.12.2023 (I)
COURSE NAME	Quantum Mechanics -I	COURSE CODE	РНН503В
PROGRAM	M.Sc. (Physics)	CREDITS	4
TIME DURATION	3hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Jaiparkash	NAME OF COURSE COORDINATOR	Dr. Jaiparkash

Note: All questions are compulsory.

Set- A

The same	PO PER MANAGEMENT	The are compared y.			Sel- A	
Q). No.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
A	1(a)	Explain the significance of the continuity equation in the context of quantum mechanics and hence derive continuity equation.	3+7		BT2	2.1. 1, 2.2. 1, 3.1.
PART-A	1(b)	Find the normalization constant A of a particle described by the Gaussian wave packet with wave function $\psi = Ae^{\frac{\alpha^2 x^2}{2}}e^{ikx}$ in all space. Also find the average value of position of the particle.	5	CO1	BT3	2.1. 1, 2.2. 1, 3.1.
	2(a)	Applying Schwarz inequality relation, show that $\Delta p \Delta x \ge h/4\pi$.	8		BT3	2.1. 1, 2.2. 1, 3.1. 1
PART-B	2(b)	Find the value of [H, p _x], where H and p _x represent the Hamiltonian and x component of linear momentum operators respectively.	5	CO2	BT2	2.1. 1, 2.2. 1, 3.1.
	2 (c)	Show that $[A, BC] = [A, B] C + B [A, C];$ where A, B, and C are operators.	2		BT3	2.1. 1, 2.2. 1, 3.1.

0.0		3	Apply the Schredinger ways	15			Т. —
			Apply the Schrodinger wave equation for a particle trapped in attractive delta potential and hence derive expressions for Eigen function and Eigen value.	15	-	BT3	2.1. 1, 2.2. 1, 3.1.
000	PART-C	4	Apply the Schrodinger wave equation for a molecule to derive the expression for rotational energy values of the molecule assuming it as a rigid rotator.	15	CO3	BT3	2.1. 1, 2.2. 1, 3.1. 1
He		5	The OH – radical has a moment of inertia of 1.5 $\times 10^{-40}$ kg m ² . Calculate its internuclear distance. Also calculate its angular momentum and angular velocity for $l=5$.	5	,	ВТ3	2.1. 1, 2.2. 1, 3.1.
SSS		6	Outline the key assumptions and conditions under which perturbation theory is applicable. Derive the expression for the first-order correction to the energy using time-independent perturbation theory for a non-degenerate case.	15		BT2	3.3.
	PART-D	7	Find out the solution for first order correction in energy for a degenerate case.	15	CO4	BT2	3.3. 3
SSEL	PA	8	Find the first order correction in energy of hydrogen atom placed in an external electric field E such that the perturbed Hamiltonian H' = - eEr $\cos\theta$ if it is in ground state given by $\psi_{100} = \frac{e^{\frac{r}{a_o}}}{\sqrt{\pi a_o^3}}.$	5		BT3	3.3.
1333				,			
-			· ·				
3			*****				
			*		ε		

		3	Apply the Schrodinger wave equation for a particle trapped in attractive delta potential and hence derive expressions for Eigen function and Eigen value.	15		BT3	2.1. 1, 2.2. 1, 3.1.
	PART-C	4	Apply the Schrodinger wave equation for a molecule to derive the expression for rotational energy values of the molecule assuming it as a rigid rotator.	15	CO3	BT3	2.1. 1, 2.2. 1, 3.1.
		5	The OH – radical has a moment of inertia of 1.5 $\times 10^{-40}$ kg m ² . Calculate its internuclear distance. Also calculate its angular momentum and angular velocity for l = 5.	5.		BT3	2.1. 1, 2.2. 1, 3.1.
		6	Outline the key assumptions and conditions under which perturbation theory is applicable. Derive the expression for the first-order correction to the energy using time-independent perturbation theory for a non-degenerate case.	15	A	BT2	3.3.
3	PART-D	7	Find out the solution for first order correction in energy for a degenerate case.	15	CO4	BT2	3.3.
	PAN	8	Find the first order correction in energy of hydrogen atom placed in an external electric field E such that the perturbed Hamiltonian H' = - eEr $\cos\theta$ if it is in ground state given by $\frac{r}{a_n}$	5		ВТ3	3.3.
T			$\Psi_{100} = \frac{e^{-\pi n}}{\sqrt{\pi a_o^3}}.$				

3			ተቀጥጥጥጥ				
			8 "				

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM/SESSION	11.12.2023 (I)
COURSE NAME	Measure Theory	COURSE CODE	MAH504B
PROGRAM	M.Sc. Mathematics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Dinesh Tripathi	NAME OF COURSE COORDINATOR	Dr. Kamlesh Kumar

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Let $S = \{E \subseteq \mathbb{R} : \text{ either } E \text{ or } E^c \text{ is finite}\}$. Is S an algebra? Is S an σ —algebra? Explain.	5	COI	ВТ2	1.1.1
PAI	1(B)	Show that open sets are measurable.	5	COI	BT2	1.1.1
PART-A	1(C)	Let X be a set and S be a family of subsets of X . Then show that the intersection of all σ –algebras containing S is a σ –algebra on X , and it is the smallest σ –algebra on X containing S .	5	COI	BT3	3.1.2
	2(A)	Show that interval of the form $[a, \infty)$ is measurable.	5	CO2	BT4	1.1.1
PART-B	2(B)	If $f, g: E \to \mathbb{R}$ are measurable functions. Then show that $\{x: f(x) > g(x)\}$ is measurable.	5	CO2	BT4	1.1.1
B	2(C)	Let f and g be real Borel measurable functions on set E . Then prove that $f+g$ and f^2 are Borel measurable.	5	CO2	ВТ3	3.1.2
P	3(A)	State and prove Monotone convergence theorem.	12	CO3	ВТ2	3.1.3
PART-C	3(B)	If f and g are in $\mathbb{L}(\mathbb{R})$ and $c \in \mathbb{R}$, then show that $f + g$ and cf are in $\mathbb{L}(\mathbb{R})$, and moreover $\int_{\mathbb{R}} f + g = \int_{\mathbb{R}} f + \int_{\mathbb{R}} g \int_{\mathbb{R}} (cf) = c \int_{\mathbb{R}} f$	12	CO3	BT2	3.1.2

9		*			32	20
	3(C)	Consider the following functions from \mathbb{R} to \mathbb{R} , where \mathbb{R} is with Lebesgue measure. $f(x) = \begin{cases} 1 & \text{if } x \leq 0 \\ 0 & \text{if } x > 0 \end{cases}$ $g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ x & \text{if } x \notin \mathbb{Q} \end{cases} \text{ and } h(x) = \begin{cases} 1 & \text{if } x = 0 \\ x & \text{if } x \neq 0 \end{cases}$ Then prove or disprove the following statement f is continuous a. e. on \mathbb{R} ` $g(x) = x$ a. e. on $x \in \mathbb{R}$ h(x) = x except $x = 0$ so that $g(x) = x$ for almost all $x \in \mathbb{R}$.	11	CO3	BT4	2.3.1
	4(A)	Let f and g be real measurable functions on X and $1 \le p \le \infty$. Then show that $\ f + g\ _p \le \ f\ _p + \ g\ _p$	12	CO4	BT3	3.1.2
PART-D	4(B)	Let (f_n) be sequence of extended real valued measurable functions on a measurable space (X, \mathcal{S}, μ) and $f_n \to f$ a. e. on X . If μ is complete measure then show that f is measurable.	12	CO4	ВТ4	3.1.3
	4(C)	Let $f_n \stackrel{\mu}{\to} f$ and $g_n \stackrel{\mu}{\to} g$ on a measurable space (X, \mathcal{S}, μ) . Then show that $f_n + g_n \stackrel{\mu}{\to} f + g \text{ and } \alpha f_n \stackrel{\mu}{\to} \alpha f, \alpha \in \mathbb{R}.$	11	CO4	BT2	3.1.2

END

MANAY RACIONA UNIVERSITYA

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	_ I	DATE OF EXAM	14 12 0 000 / + 1
COURSE NAME	Topology-I	COURSE CODE	14.12.2023 (I) MAH502B
PROGRAM	M.Sc. Mathematics	CREDITS	1
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. Aparna Vyas	NAME OF COURSE COORDINATOR	Dr. Aparna Vyas

Note: All questions are compulsory.

The Park	ET HOLE	the comparisory.				Sano
	Q.NO.	QUESTIONS	MARKS	CO ADDRE SSED	BLOO M'S LEVE L	PI
	1(A)	If $\{\tau_{\alpha}, \alpha \in A\}$ is a family of topologies on a set X , then show that $\bigcap_{\alpha \in A} \tau_{\alpha}$ is also a topology on X .	2	CO1	BT1	1.1.1, 1.1.2
PART-A	1(B)	Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. In the space (X, τ) , find the interior and the closure of $A = \{a, c\}$.	2	CO2	BT2	1.1.1, 1.1.2
	1(C)	Is $f:(1, \infty) \to (a, \infty)$ defined by $f(x) = ax$, $a > 0$, a homeomorphism?	2	CO4	BT2	1.2.1, 3.1.2
	1(D)	Define co-countable topology and co-countable space with example.	2	CO3	BT1	1.1.1, 1.1.2
	1(E)	Let A be a set in space (X, τ) . Then show that $\tau A = \{H = G \cap A G \in \tau\}$.	2	·CO3	BT2	1.2.1, 3.1.2
	Q2(A)	Let S be a sub-basis for a topology τ on a set X. Then show that the collection B consisting of finite intersections of members of S is a basis for τ .	7	CO2	BT3	1.1.1, 1.1.2
AR	2(B)	Show that a second countable space is separable.	5	CO3	BT2	1.1.1, 1.1.2
PART-B	2(C)	Let Y be a subspace of a space X and let A be a set in Y. Then show that (a) $Cl_YA = Cl_XA \cap Y$, (b) $D_Y(A) = D_X(A) \cap Y$, (c) $Int_YA \supset Int_XA \cap Y$, (d) $Bd_YA \subset Bd_XA \cap Y$.	8	CO3	BT3	1.1.1, 1.1.2

			ì	Ĩ	1
Q3(A)	2	12	CO5	BT4	1.2.1, 3.1.2
3(B)	space Y. (a) If f is a closed mapping, then show that Y is also T ₁ -space. (b) If f is a homeomorphism, then show that Y is also a T ₁ -space.		CO4	BT3	1.2.1, 3.1.2
Q4(A)	Flausdorff space Y. Then show that the graph $G(f) = \{(x, f(x)) x \in X\}$ is a closed set of $X \times Y$.	8	CO4	BT4	1.2.1, 3.1.2
4(B)	Show that a product of Tychonoff spaces is Tychonoff. Or Show that a regular normal space is completely regular.	7	CO3	ВТЗ	1.1.1, 1.1.2
Q5(A)	Show that a closed set F of a compact space X is compact.	6	CO2	ВТ3	1.2.1, 3.1.2
5(B)	If K is a compact set in a Hausdorff space X and $x \in X$, $x \notin K$, then show that there exist open sets G_x and G_K of X such that $x \in G_x$, $K \subset G_K$ and $G_x \cap G_K = \emptyset$.	6	CO2	ВТ3	1.1.1, 1.1.2
5(C)	Prove that a space X is compact if and only if each family of closed sets of X having the finite intersection property (f.i.p.) has non empty intersection.	8	CO3	BT4	1.1.1, 1.1.2
Q6(A)	there exists a continuous mapping from X to the discrete 2-space which is a surjection.	8	CO4	BT3	1.2.1, 3.1.2
6(B)	are no nonempty separated sets A and B in X such that $Y = A \cup B$. Or Show that any two distinct components of a space are	7	CO1, CO3	BT4	1.2.1, 3.1.2
	3(B) Q4(A) 4(B) Q5(A) 5(B) 5(C) Q6(A)	Let $f: X \to Y$ be a mapping from T_1 -space X onto a space Y . (a) If f is a closed mapping, then show that Y is also T_1 -space. (b) If f is a homeomorphism, then show that Y is also a T_1 -space. Let $f: X \to Y$ be a continuous map from a space X to a Hausdorff space Y . Then show that the graph $G(f) = \{(x, f(x)) x \in X\}$ is a closed set of $X \times Y$. Show that a product of Tychonoff spaces is Tychonoff. Or Show that a regular normal space is completely regular. If K is a compact set in a Hausdorff space X and $X \in X$, $X \notin K$, then show that there exist open sets G_X and $G_X \cap G_X = \emptyset$. Prove that a space X is compact if and only if each family of closed sets of X having the finite intersection property $(f.i.p.)$ has non empty intersection. Show that a space X is disconnected if and only if there exists a continuous mapping from X to the discrete X -space which is a surjection. Show that a set X in a space X is connected iff there are no nonempty separated sets X and X in X such that X is a space X is connected iff there are no nonempty separated sets X and X is X such that X is X is a space X is connected iff there are no nonempty separated sets X and X is X such that X is X in a space X is connected iff there are no nonempty separated sets X and X is X such that X is X is X is X is X is X such that X is X i	Let $f: X \to Y$ be a mapping from T_1 -space X onto a space Y . (a) If f is a closed mapping, then show that Y is also T_1 -space. (b) If f is a homeomorphism, then show that Y is also a T_1 -space. Let $f: X \to Y$ be a continuous map from a space X to a Hausdorff space Y . Then show that the graph $G(f) = \{(x, f(x)) x \in X\}$ is a closed set of $X \times Y$. Show that a product of Tychonoff spaces is Tychonoff. Or Show that a regular normal space is completely regular. $G(f) = \{(x, f(x)) x \in X\}$ is a closed set of $X \times Y$. Show that a product of Tychonoff spaces is Tychonoff. Or Show that a closed set F of a compact space X is compact. If K is a compact set in a Hausdorff space X and $X \in X$, $X \notin K$, then show that there exist open sets G_X and $G_X \cap G_X = \emptyset$. Prove that a space X is compact if and only if each family of closed sets of X having the finite intersection property $(f.i.p.)$ has non empty intersection. Show that a space X is disconnected if and only if there exists a continuous mapping from X to the discrete 2-space which is a surjection. Show that a set Y in a space X is connected iff there are no nonempty separated sets X and X is a space are X is connected iff there are no nonempty separated sets X and X is a space are	Let $f: X \to Y$ be a mapping from T_1 -space X onto a space Y . (a) If f is a closed mapping, then show that Y is also T_1 -space. (b) If f is a homeomorphism, then show that Y is also a T_1 -space. Let $f: X \to Y$ be a continuous map from a space X to a Hausdorff space Y . Then show that the graph $G(f) = \{(x, f(x)) x \in X\}$ is a closed set of $X \times Y$. Show that a product of f Tychonoff spaces is Tychonoff. Or Show that a regular normal space is completely regular. Or Show that a closed set f of a compact space f is compact. If f is a compact set in a Hausdorff space f and f is a compact. If f is a compact set in a Hausdorff space f and f is a compact. If f is a compact set in a Hausdorff space f and f is a such that f is a compact if and only if each family of closed sets of f is a compact if and only if there exists a continuous mapping from f to the discrete f is a surjection. Show that a space f is disconnected if and only if there exists a continuous mapping from f to the discrete f in a space f is a surjection. Show that a set f in a space f is connected iff there are no nonempty separated sets f and f in f in f in f is a surjection. Show that any two distinct components of a space are	Let $f: X \to Y$ be a mapping from T_1 -space X onto a space Y . (a) If f is a closed mapping, then show that Y is also a T_1 -space. (b) If f is a homeomorphism, then show that Y is also a T_1 -space. Let $f: X \to Y$ be a continuous map from a space X to a Hausdorff space Y . Then show that the graph $G(f) = \{(x, f(x)) x \in X\}$ is a closed set of $X \times Y$. Show that a product of Tychonoff spaces is Tychonoff. Or Show that a regular normal space is completely regular. 4(B) Show that a closed set Y of a compact space Y is an expectation of Y in a space Y is an expectation. Show that a space Y is compact if and only if there exists a continuous mapping from Y to the discrete Y -space which is a surjection. Show that a space Y is disconnected iff there are no nonempty separated sets Y and Y or Y is a space Y in a space Y is connected iff there are no nonempty separated sets Y and Y is a space Y in a space Y is connected iff there are no nonempty separated sets Y and Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected iff there are no nonempty separated sets Y in a space Y is connected if Y is a space Y in a s

******* END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End-term Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	20.12.2023 (I)
COURSE NAME	Mathematical Statistics	COURSE CODE	MAH512B
PROGRAM	M.Sc.(Mathematics)	CREDITS	4
TIME DURATION	3 Hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Deepa Arora	NAME OF COURSE COORDINATOR	Dr. Bhawna Singla

Note: All questions are compulsory.

	7.000000					
Q.NO.		QUESTIONS	MA RK S	CO AD DR ESS ED	BLO OM' S LEV EL	PI
	Q1(A)	Given that $f(x) = k\left(\frac{1}{2}\right)^x$ is a probability distribution of a random variable which can take on the values $x = 0,1,2,3,4,5,6$, find k and an expression for the corresponding cumulative probabilities $F(x)$.	6	CO1	BT1	PI 2.3.1
ART-A	Q1(B)	Let the joint probability density function of the random variables X and Y be $f(x,y) = \begin{cases} 2(x+y-3xy^2); & 0 < x < 1; & 0 < y < 1 \\ & 0, & \text{otherwise} \end{cases}$ Find i Marginal distributions of X and Y ii Are X and Y independent? iii Find $E(X+Y)$ and $E(X-Y)$.	9	CO1	ВТ3	PI 3.1.2
PART-B	Q2(A)	Obtain the maximum likelihood estimator for normal population $N(\mu, \sigma^2)$, for σ^2 when μ is known.	7	CO2	BT2	PI 1.1.2
AT-	Q2(B)	Prove that an M.V.U is unique in the sense that if T_1 and T_2 are M.V.U estimators for $\gamma(\Theta)$, then $T_1 = T_2$, almost surely.	8	CÔ2	BT4	PI 3.1.2
	Q3	In a sample of 400 parts manufactured by a factory, the number of defective parts was found to be 30. The company however claimed that atmost 5% of their product is defective. Is the claim tenable?	5	CO3	BT2	PI 1.1.2

	M	In an	exper	riment	on 1	164	peor	ole v	with	flu,	hal	of	then	n we	ere g	given		1		
P A R T	Q4	Drug Home (Given	below hesis to e edies on Chi-	w shothat the	ows e dru elpec 04	the ig in d	n we rea no b	ere gaction bette Har 20 24	given ons the that the the the the the the the the the th	to to tan th	ome the ne ho	rem trest ome i No ei	remer ffect	edies	The Fest	table the	10	CO3	ВТЗ	PI 2.3
C	facings are effective in increasing sales volume. New shelf facings							ings of 15												
		Store Befor e		2 3	38	12	69	7	39	9	10	92	12	13	70	15	12	CO3	BT3	PI 2.3.
		Using t		54 20 05 lev	35 rel of	21 f sig	70	1 canc	65 Ce. de	79	10	90	32 Ve +1	19	77 ho •	29				
	Q5	Explain	the m	would nerits a	incr	rease	sale	es of	f Cou	untry	y Ti	me?					0	502	7.770	PI 3.1.
	Q6	Two dirrandom 8 mice is same Food A Food B	fferen samp were g	nt food ble of 6 given wo diffe	ls are 6 mic food erent	re tes	sted vas g Test ods, g	for given	diff	ference od A pothe foll 2	nce i	in w d and that ing d	veigh other	nt ga r sar lian	ains nple wei	. A	12	CO3	BT2 BT4	PI 3.1.2
PAR	Q7	(Critical	Valu						10	<u>* </u>	119		_1/		17					
PART-D	Q8	Explain ANOVA	Anal	ysis o	f Va	arian	ice.	Als	o er	xpla	in t	ne a	ıssur	npti	ons	of	5	CO4	BT2	PI 3.1.2
	Q9	A trucking brands of trucks. The areas gives are as gives areas gives areas areas gives areas ar	The reven in 1 20 19 19 19 19 19 19 19 19 19 19 19 19 19	ecords: 1 table 0 9 1 5 hesis tl	show below 2 1 1 1 hat the	npanywing ow: 23 15 7 the avignifi	the verag	18 17 20 16 16 16 16 16 16 16 16 16 16 16 16 16	all brokes (the second	housa or ea	17 20 17 18 ach b	rances of i	domi mile	ly sees) o	s is	ted res	12	CO4	BT4	PI 3.1.2
	Q10	Describe application	the l	Mann- the te	Whi st an	tney d ho	tes w is	t fo	r la liffe	rge rent	sam fron	ples	Est.	xplai	in tl	he	6	CO4	BT2	PI 1.1.2

Table 2 : SIGNIFICANT VALUES $t_v(\alpha)$ OF t-DISTRIBUTION (TWO TAIL AREAS) [| t | > $t_v(\alpha)$] = α

d.f.	THE RESERVE	Probability (Level of Significance)							
(v)	0.50	0.10	0.05	0.02	0.01	0.001			
1	1.00	6.31	12.71	31.82	63.66	636.62			
2	0.82	0.92	4.30	6.97	6.93	31.60			
3	0.77	2.32	3.18	4.54	5.84	12.94			
4	0.74	2.13	2.78	3.75	4.60	8.61			
5	0.73	2.02	2.57	3.37	4.03	6.86			
6	0.72	1.94	2.45	3.14	3.71	5.96			
7	0.71	1.90	2.37	3.00	3.50	5.41			
8	0.71	1.80	2.31	2.90	3.36	5.04			
9	0.70	1.83	2.26	2.82	3.25	4.78			
10	0.70	1.81	2.23	2.76	3.17	4.59			
11	0.70	1.80	2.20	2.72	3.11	4.44			
12	0.70	1.78	2.18	2.68	3.06	4.32			
13	0.69	1.77	2.16	2.05	3.01	4.22			
14	0.69	1.76	2.15	2.62	2.98	4.14			
15	0.69	1.75	2.13	2.60	2.95	4.07			
16	0.69	1.75	2.12	2.58	2.92	4.02			
17	0.69	1.74	2.11	2.57	2.90	3.97			
18	0.69	1.73	2.10	2.55	2.88	3.92			
19	0.69	1.73	2.09	2.54	2.86	3.88			
20	0.69	1.73	2.09	2.53	2.85	3.85			
21	0.69	1.72	2.08	2.52	2.83	3.83			
22	0.69	1.72	2.07	2.51	2.42	3.79			
23	0.69	1.71	2.07	2.50	2.81	3.77			
24	0.69	1.71	2.06	2.49	2.80	3.75			
25	0.68	1.71	2.06	2.49	2.79	3.73			
26	0.68	1.71	2.06	2.48	2.78	3.71			
27	0.68	1.70	2.05	2.47	2.77	3.69			
28	0.68	1.70	2.05	2.47	2.76	3.67			
29	0.68	1.70	2.05	2.46	2.76	3.66			
30	0.68	1.70	2.04	2.46	2.75	3.65			
00	0.67	1.65	1.96	2.33	2.58	3.29			

X. 5% POINTS OF FISHER'S F-DISTRIBUTION

N.	1	2	3	4	5	6	7	8	9	10	12	15	20	30	60	g.
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88						
2	18513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.355	19.396	243.91 19.413	245.95 19.420	248.01 19.446	250.09 19.462	252.20 19.479	254.32
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8868	8.8452	8.8123	8.7855	8,7440	8.7029	8,6602	8.6166	STATE OF	19.496 8.5265
4	7.7086	6.9443	6.5914	6.3883	6.2560	6.1631	6.0942	6.0410	5.9988	5.9644	5.9117	5.8578	5.8025	5.7459	5.6878	5.0281
5	6.6079	5.7861	5,4095	5,1922	5,0503	4.9503	4.8753	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.4957	4.4314	4.3650
6	5.9874	5.1433	4,7571	4.5337	4.3874	4.2839	4.2066	4.1468	4.0990	4.0600	3.9999	3.9381	3.8742	3.8082	3.7398	3.6688
1	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3.6365	3.5747	3.5108	3.4445	3.3758	3.3043	3.2298
8	5.3177	4.4590	4.0662	3,8378	3.6875	3.5806	3.5005	3,4381	3.3881	3,3472	3.2840	3.2184	3.1503	3.0794	3.0053	19278
9	5.1174	4.2565	3.8626	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0001	2 9365	2.8637	2.7872	2,7007
10	4.9646	4.1028	3.7083	3,4780	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.9130	2.8450	2.7740	2.6996	2.6211	2.5379
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962	2.8536	2.7876	2.7186	2.6464	2.5705	2.4901	24045
12	4.7272	3.8853	3.4903	3.2502	3.1059	2.9961	2.9134	2.8486	2,7934	2.7534	2.6866	2.6169	2.5436	2.4663	2.3842	2.2962
13	4.6672	3.8056	3.4105	3.1791	3,0254	2.9153	2.8321	2.7669	2.7144	2.6710	2.6037	2.5331	2,4589	2.3803	2.2966	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6021	2.5342	2.4630	2.3879	2.3082	2.2230	2.1307
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2,5437	2,4753	2.4035	2,3275	2.2468	2.1801	2.0658
16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2,4247	2.3522	2,2756	2.1038	2.1053	200%
17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943	2.4499	2.3807	2.3077	2.2301	2.1477	2.0584	1.9604
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2,5102	2.4563	2.4117	2.3421	2.2686	2.1966	21071	2.0166	19:63
19	4.3808	3.5219	3.1274	2.8951	2,7401	2.6283	2.5435	2.4768	2,4227	2.3779	2.3080	2.2341	2.1555	2,0712	1.97%	1.8780
20	4.3513	3.4928	3.0984	2,8661	2.7100	2.5990	2.5140	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0391	1.946	1.8132
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3661	2.3210	2.2504	2.1757	2.0960	2.0102	1.9163	1.3117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2,3419	2.2967	2.2258	2.1508	2.0707	19843	1.339	1.7831
23	4.2793	3.4221	3.0280	2.7955	2.6500	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	1.9605	1.864	1,3570
24	4.2597	3 4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2,2547	2.1834	2.1077	2.0267	1.9390	1.842	1 1.2331
25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9193	1.821	1 1.7110
	4.2252	3.3690	2.9751	2.7426	2.5868	2,4741	2.3883	2,3205	2.2655	2,2197	2.1479	2.0716	1.9898	1.9010	1.802	1.6906
	4.2100	3,3541	29604	2.7278	2.5719	2,4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1,384	2 1.785	1 1.6717
COR.	4.1960	3.3404	2.9467	2,7141	2.5581	2.4453	2.3593	2.2913	2.2360	2.1900	10/55/200	H SHEEDS SALES	1.9586	STATE OF THE PARTY.	1 1.768	9 1,6541
	4.1830	3.3277	2.9340	2.7014	2.5454	2,4324	2,3463	2.2782	2.2229	2.1768	The second second	2.0275	NAME OF TAXABLE	STEELS IN	1 133	1 1.6377
Car	4.1709	33158	2.9223	2.6896	2.5336	2,4205	2.3343	2.2662	2.2107	2.1646		Townson, Section 2015			SE HOUSE	D. School
1		CONTRACTOR OF THE PARTY OF THE	2.8387	2.6060	2,4495	2.3359	2.2490	2.1802	2.1240	2.0772	STATE OF THE PARTY OF	8 9220300	84 (STEEL) (FE		St. School	THE RESIDENCE
	4.0848	3.2317	MARCH STATE	2.5252	2.3688	2.2540	2.1665	2.0970	2.0401	1.9926	11053 (3.0)	1 9000 CO		SE 1965.50	OF MARK	
200	4.0012	3.1504	2.7581		2.2900	2.1750	2.0867	2.0164	1.9588	1.9105	23 (3.6E) 6.52	CO SERVICE DE	1	ST AND DE		and the same
	3.9201	3.0718	2.6802	2.4472		2.0986	2.0096	1.9384	1.8799	1.8307	A RECEIVED	0.3005000		3 3000		2 1 190000
0 3	3.8415	2.9957	2.6049	2.3719	2.2141	2.0700		-	٧	1,000	Latina	1,0004	1000			

非水水水水水

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	1 st	DATE OF EXAM	22.12.2023 (I
COURSE NAME	Abstract Algebra	COURSE CODE	MAH514B
PROGRAM ·	M.Sc-Mathematics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Kamlesh Kumar	NAME OF COURSE COORDINATOR	Dr. Dinesh Tripathi

Note: All	auestions	are	comput	corv
-1010. /111	unconvins	uic	Compan	SUIV.

2	voie	. Au que	estions are compulsory.			CORP	land "
	Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S /	PI
	P	Q1(A)	Let A is left ideal and B be a right ideal of a ring R , then show that AB is a two sided ideal of R , whereas BA is not an ideal of R .	5	CO1	ВТ3	1.1.
PART-A	1(B)	Examine that the map $f: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{2}]$ defined as $f(x + \sqrt{2}y) = x - \sqrt{2}y$; $x, y \in \mathbb{Z}$ is homomorphism. Is this an isomorphic function?	5	CO1	BT4	1.1.	
		1(C)	Show that $1-i$ is an irreducible element in $\mathbb{Z}[i]$. Is this prime element in $\mathbb{Z}[i]$?	5	CO1	BT3	1.1. 3.1.
	P.	Q2(A)	If possible, find the g.c.d and l.c.m of $10 + 11i$ and $8 + i$ in $\mathbb{Z}[i]$.	5	CO2	BT4	1.1. 3.1. 3.1.
	PART-B	2(B)	Show that the ideal $A := \{xf(x) + 2g(x): f(x), g(x) \in \mathbb{Z}[x]\}$ is a maximal ideal of $\mathbb{Z}[x]$.	5	CO2	BT4	1.1. 3.1. 3.1.
	B	2(C)	Let R be an UFD and $0 \neq f(x) \in R[x]$. Then show that $f(x) = a \ g(x)$, where $a = c(f)$ and $g(x)$ is a primitive in $R[x]$.	5	CO2	BT3	3.1. 3.1.
-		Q3(A)	For an abelian group M , let $End_{\mathbb{Z}}(M)$ be the ring of all (additive) endomorphism's of M . Let R be any ring. Show that M is a left R —module $\Leftrightarrow \exists$ a ring homomorphism $\phi: R \to End_{\mathbb{Z}}(M)$.	10	CO3	BT2	3.1. 3.1.
2	PART-C	3(B)	Suppose M and N are submodules of an R —module P . Show that $M \cap N = (0)$ if and only if $\forall z \in M + N$ can be uniquely written as $z = x + y$ with $x \in M$ and $y \in N$.	10	CO3 .	ВТЗ	3.1.
2	Ċ	3(C)	Let M be an R —module and N be its submodule. Then prove the following; i. M/N is module containing N . ii. The submodules of M/N are of the form N_0/N , where N_0 is a submodule of M	15	CO3	BT2	3.1

		containing.				
P/	Q4(A)	Define Noetherian Modules. Show that <i>M</i> is Noetherian Module if and only if Maximum condition holds for <i>M</i> .	12	CO4	BT2	1.1.
PART-I	4(B)	With suitable example show that <i>Artinian</i> ⇒ <i>Noertherian</i> .	10	CO4	ВТ3	1.1. 3.1. 3.1.
D	4(C)	State and prove Hilbert Basis Theorem.	13	CO4	ВТ3	1.1. 3.1.

END

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	IIIrd ·	DATE OF EXAM/SESSION	Ceab (6) 80
COURSE NAME	Graph Theory	COURSE CODE	ман605В (П)
PROGRAM	M.Sc. (Mathematics)	CREDITS	4
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. Ankita Gaur	NAME OF COURSE COORDINATOR	Dr. Ankita Gaur

Note: All questions are compulsory.

	Q.NO.	QUESTIONS	MARKS	CO ADDR ESSE D	BLOOM S LEVEL	PI
PA	Q.1 (a)	Show that the maximum number of edges in a complete bipartite graph of n vertices is $\frac{n^2}{4}$.	8	CO1	BT2	PI 1.1.1
PART-A	Q.1(b)	Consider the three distinct vertices x , y , z in a graph G . Prove that there exists a path between z and x if there is a path between x and y and also a path between y and z .	7	CO1	BT4	PI 4.1.1
	Q.2 (a)	Prove that in a non-trivial tree T there are at least two pendant vertices.	7	CO2	BT4	PI 1.1.2
PART-B	Q.2(b)	Find out the minimal spanning tree using Prim's algorithm for the following graph.	8	CO2	BT3	PI 4.1.2
PART-C	Q.3	Prove that a connected graph <i>G</i> contains an unicursal line if it has two vertices of odd degree. Answer and justify: (i) Which complete bipartite graphs are Eluerian?	12	C03	BT4	PI 4.2.1 PI 4.2.2

WAR.		(ii) For what values of n is the graph	1	T	T	
		k_n Eulerian ?	,			
	Q.4	Prove that in a complete graph with n vertices there are $\frac{(n-1)}{2}$ edge – disjoint Hamiltonian circuits, if n is odd. Also solve the following problem: Eleven students plan to have dinner together for several days. They will be seated at a round table and the calls for each student to have different neighbors at every dinner. For how many ways can this be done?	12	CO3	BT4	PI 4.1.2
	Q.5	Find the shortest path from A to all other vertices using Dijkstra's algorithm in the given weighted graph:	11	CO3	BT3	PI 1.1.1
	Q.6	State and prove decomposition theorem. Find out the chromatic polynomial of the given graph using decomposition theorem:	12	CO4	BT2 BT4	PI 4.1.1
PART-D	Q.7	Stat and prove Euler's theorem for planar graphs. Also, show that a simple graph with 7 vertices each of degree 4 is non – planar.	11	CO4	BT4 BT3	PI 4.1.2
T-D	Q.8	State and prove five color problem. Also find chromatic number of the following graph:	.12	CO4	BT4 BT3	PI 4.1.1

MANAV RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM/SESSION	12/12/2023
COURSE NAME	Integral Equations and Calculus of Variations	COURSE CODE	MAH601B (LL)
PROGRAM	M.Sc. Mathematics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Kamlesh Kumar	NAME OF COURSE COORDINATOR	Dr. Deepa Arora

Note: All questions are compulsory.								
Q.NO.		QUESTIONS	MAR KS	CO ADDRE SSED	BLOOM' S LEVEL	PI		
PART-A	1(A)	Convert the differential equation into an integral equation: $y'' - (\sin x) y' + e^x y = x;$ $y(0) = 1, \ y'(0) = -1.$ Analyze the equation obtained and tell its type and kind.	7	CO1	BT4	1.1.1		
	1(B)	Is $y(x) = \cos 2x$ is a solution of the integral equation $y(x) = \cos x + 3 \int_0^{\pi} K(x,t)y(t)dt$ where $K(x,t) = \begin{cases} \sin x \cos t, 0 \le x \le t \\ \cos x \sin t, t \le x \le \pi \end{cases}$? Verify.	8	. CO1	BT2	1.1.1		
	2(A)	Compute the iterated kernels for $K(x,t) = x + \sin t$; $\alpha = -\pi, b = \pi$.	8	CO2	BT4	1.1.1		
PART-B	2(B)	Find the characteristic values and the corresponding Eigen functions of the homogeneous Fredholm integral equation of the second kind: $y(x) = \lambda \int_0^{\pi} \cos(x+t) y(t) dt.$	7	CO2	BT4	1.1.1 1.1.2		
PART-C	3(A)	Show that necessary and sufficient condition that the second order homogeneous linear differential equation $a_0(x)\frac{d^2y}{dx^2}+a_1(x)\frac{dy}{dx}+a_2(x)y=0$ where $a_0(x)$ is continuously differential positive function and	11	CO3	BT2	1.1.1 2.2.1		

			-		8 i	į.
		$a_1(x)$ has the a continuous first order derivative on interval $[a, b]$ to be self adjoint is that $a_0'(x) = a_1(x)$ on $\leq x \leq b$, where prime denotes differentiation w.r. t. x . What will be the result if the homogeneous linear differential equation is self adjoint?		,	P	-
	3(C)	Construct the Green's function for the boundary value problem $\frac{d^2y}{dx^2} + 4y = 0, y(0) = y(1) = 0.$	12	CO3	BT4	1.1.1 2.2.1
	3(D)	Reduce the boundary value problem to integral equation by using the Green's function : $y'' = \lambda y + x^2$;	12	CO3	вт3	1.1.1
	4(A)	Find the stationary value or extremal of the functional $\int_{1}^{2} \frac{\sqrt{1+{y'}^{2}}}{x} dx \text{ with } y(1) = 0, y(2) = 1.$	8	CO4	вт3	1.1.1 1.1.2
7	4(B)	Prove that the area of the surface of revolution of a curve $y = y(x)$ is $2\pi \int_{x_1}^{x_2} y \sqrt{1 + {y'}^2} dx$, Hence show that for the area to be minimum, the curve must be catenary.	10	CO4	BT4	1.1.1 1.1.2 2.2.1
ART-D	4(C)	Compute the Euler –Ostrogradsky equation for $I[u(x,y)] = \int \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx \ dy$ where the values of u are prescribed on the boundary C of the domain D.	7	CO5	ВТЗ	1.1.1 1.1.2
	4(D)	Extremise the functional $I[y(x)] = \int_{x_0}^{x_1} [(y''^2 - 2y'^2 + y^2 - 2y \sin x] dx$	10	CO5	BT2	1.1.1

	PART-D	3(D) 4(A) 4(B) 4(C)	where the tale area of the surface of revolution of a curve $y = y(x) \text{ is } 2\pi \int_{x_1}^{x_2} y\sqrt{1 + y'^2} dx, \text{ Hence show that for the area to be minimum, the curve must be catenary.}$ 4(C) $I[u(x,y)] = \int_{x_0}^{x_2} [(y''^2 - 2y'^2 + y^2 - 2y\sin x] dx$ In the stational displacement of the boundary of the domain D. Extremise the functional $I[y(x)] = \int_{x_0}^{x_1} [(y''^2 - 2y'^2 + y^2 - 2y\sin x] dx$	interval $[a, b]$ to be self adjoint is that $a_0'(x) = a_1(x)$ on $\leq x \leq b$, where prime denotes differentiation w.r. t. x. What will be the result if the homogeneous linear differential equation is self adjoint? Construct the Green's function for the boundary value problem to probl	interval $[a, b]$ to be self adjoint is that $a_0'(x) = a_1(x)$ on $\le x \le b$, where prime denotes differentiation w.r. t. x. What will be the result if the homogeneous linear differential equation is self adjoint? Construct the Green's function for the boundary value problem $\frac{d^2y}{dx^2} + 4y = 0, y(0) = y(1) = 0.$ Reduce the boundary value problem to integral equation by using the Green's function: $y'' = \lambda y + x^2$; $y(0) = y\left(\frac{\pi}{2}\right) = 0.$ Find the stationary value or extremal of the functional $\int_1^2 \frac{\sqrt{1+y'^2}}{x} dx \text{ with } y(1) = 0, y(2) = 1.$ Prove that the area of the surface of revolution of a curve $y = y(x) \text{ is } 2\pi \int_{x_1}^{x_2} y \sqrt{1+y'^2} dx, \text{ Hence show that for the area to be minimum, the curve must be catenary.}$ Compute the Euler – Ostrogradsky equation for $I[u(x,y)] = \int \left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2\right] dx dy$ where the values of u are prescribed on the boundary C of the domain D. Extremise the functional $I[y(x)] = \int_{x_0}^{x_1} [(y''^2 - 2y'^2 + y^2 - 2y \sin x] dx$ 10 CO5	interval [a, b] to be self adjoint is that $a_0'(x) = a_1(x)$ on $\le x \le b$, where prime denotes differentiation w.r. t. x. What will be the result if the homogeneous linear differential equation is self adjoint? Construct the Green's function for the boundary value problem $\frac{d^2y}{dx^2} + 4y = 0, y(0) = y(1) = 0.$ Reduce the boundary value problem to integral equation by using the Green's function: $y'' = \lambda y + x^2$; 12 CO3 BT3 $y(0) = y\left(\frac{x}{2}\right) = 0.$ Find the stationary value or extremal of the functional $\begin{cases} 1 \\ 1 \\ 1 \end{cases} = \begin{cases} 1 \\ 1 \end{cases}$ Prove that the area of the surface of revolution of a curve $1 \le 1 $ and $1 \le 1 \le 1 \le 1 $ and $1 \le 1 \le 1 \le 1 $ and $1 \le 1 \le 1 \le 1 $ and $1 \le 1 \le 1 \le 1 \le 1 $ and $1 \le 1 \le 1 \le 1 \le 1 \le 1 \le 1 $ and $1 \le 1 $

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM	16.12.2023 (
COURSE NAME	FLUID MECHANICS	COURSE CODE	MAH602B
PROGRAM	M.Sc. (Mathematics)	CREDITS	<u> </u>
TIME DURATION	3:00 hr.	MAX. MARKS	100
NAME OF FACULTY	Dr. Ruchi Gupta	NAME OF COURSE COORDINATOR	Dr. Ruchi Gupta

Note: All questions are compulsory.

	.NO.	QUESTIONS	MAR KS	CO ADDRES SED	BLOO M'S LEVEL	PI
PART-A		Define stream line, path line and vertex line. Obtain the necessary and sufficient conditions that vortex lines may be right angle to the stream lines.	6+9	CO1	ВТ2	_2.3.1
PART-A PART-B	Q2.	What do you mean by equation of continuity? Drive it in any one form.	5+10	CO2	BT4	3.1.3
	Q3(A)	Prove that a two dimensional flow towards a normal boundary is found to be characterized by normal component of velocity that directly with distance from the boundary determine stream function and stream line.	7	CO3	ВТ3	2.2.1
	Q3(B)	State and prove circle theorem.	8	CO3	ВТ3	2.2.1
PART-C	Q4(A)	What arrangement of source and sink will give rise to the function $w = log(z - a^2/z)$. Prove that two of the stream lines sub-divide into the circle r=a and axis of y.	5+5	CO3	BT3	2.3.1
	Q4(B)	Prove that for the complex potential $tan^{-1}z$ the stream lines and equi-potentials are circles.	5+5	CO3	ВТ3	2.2.1

			,			
PART-D	Q5	Establish Navier-Stokes equations of motion for a viscous compressible fluid.	15	CO4	BT4	2.3.1
[-D	Q6(A)	Examine the motion of viscous fluid of uniform density between parallel planes, the motion being steady where one plate is at rest and other in the motion.	10	CO4	BT4	3.1.3
	Q6 (B)	Water at 20°C flows between two large parallel plats at a distance 1.5 mm apart. If the average velocity is 0.15m/sec. Compute (a) The maximum velocity (b) The wall shearing stress	5+5	CO4	BT3	1.1.2

END ***********

MARKURACHSA UNIVERSITY

MANAV RACHNA UNIVERSITY

SCHOOL OF EDUCATION AND HUMANITIES

DEPARTMENT OF EDUCATION

End Semester Examination, Dec-2023"

December 19,2023 DATE OF EXAM **EDS234** 2

Pedagogical skills **COURSE CODE COURSE NAME CREDITS** M.Sc Mathematics and **PROGRAM** M.Tech (ME) 50 MAX. MARKS 1.5 hours TIME DURATION Dr Kiran Gupta NAME OF Dr Kiran Gupta NAME OF **COURSE FACULTY**

Note: Part A - All questions in Part A are compulsory. Each question carries 2 marks Write your answer in at least 30 words.

COORDINATOR

All questions in part-B are compulsory. Each question carries 10 Marks.

3 (Set-B)

SEMESTER

Q.NO.		QUESTIONS	MARKS	CO ADDRES SED	BLOOM'S LEVEL
	1(a)	Why is there a need to write objectives in Behavioral terms? Discuss.	2	CO1	вт6
P	1(b)	Interpret the concept of 'Rubrics" and prepare rubrics for a group discussion.	2	CO4	вт3
PART-A	1(c)	Explain the term "Taxonomy" list different levels of Cognitive Domains Bloom's Taxonomy.	2	CO2	BT2
·A	1(d)	Elucidate different types of concept maps used while explaining different kinds of concepts.	2	CO3	BT4
	1(e)	Write two learning objectives using 'Application' level of Bloom's Taxonomy.	2	C03	BT3
PART-B	2	Infer the concept of 'Flipped Classroom". Highlight the role of students as well as teachers in a flipped class. OR Represent the concept of STEM and STEAM. Illustrate its significance in today's time.	4+6 5+5	CO3	BT2
	3	Explain the concept of 'Blended Learning'. As a team Leader or a teacher what learning objectives will you	4+6	CO3	BT3

	formulate while using 'Blended Learning' approach to teach? OR List the Six Thinking Hats. "The six thinking hats are a method used to amplify creative conversations", Evaluate the statement.	2+8	CO3	ВТЗ
4	Name 4C's the 21st century. Determine their significance for the teachers and professionals to do justice to their professions. OR What is "Cooperative Approach" to Learning? It facilitates development of social skills and enhanced learning in students". Justify.	4+6 4+6	CO3	BT5
5	Define Action Research. Explain various steps of the process of Action Research. OR Illustrate the concept of TPACK. Explain how does it show that there is a relationship among technology, Content and Pedagogy for effective teaching learning process?	2+8	CO4	BT2

MANAY RACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	III .	DATE OF EXAM	
COURSE · NAME	Operations Research	COURSE CODE	21.12.2023 (T) MAH604B
PROGRAM	M.Sc. Mathematics	CREDITS	4
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. Aparna Vyas	NAME OF COURSE COORDINATOR	Dr. Aparna Vyas

Note: All questions are compulsory.

			HE ELE	CO	BLO		W.
Q.NO.		QUESTIONS		ADD RES SED	OM' S LEV EL	PI	
	Q1(A)	met in order to apply linear programming?	5	CO1	BT1	1.1.1 2.1.1	
PART-A	1(B)	Solve the following LP problem by using the simplex method: Minmize $Z = 3x_1 + 5x_2 + 4x_3$ Subject to the constraints $2x_1 + 3x_2 \le 8$ $2x_1 + 5x_2 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$	10	CO3	ВТ3	1.1.1 2.1.1 3.1.1	
PART-B	Q2(A)	A company sells two different products A and B, making a profit of Rs 40 and Rs 30 per unit, respectively. They are both produced with the help of a common production process and are sold in two different markets. The production process has a total capacity of 30,000 manhours. It takes three hours to produce a unit of A and one hour to produce a unit of B. The market has been surveyed and company officials feel that the maximum number of units of A that can be sold is 8,000 units and that of B is 12,000 units. Subject to these limitations, products can be sold in any combination. Formulate this problem as an LP model to maximize profit.	5	ĊO2	BT2	1.1.1 2.1.1	

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM	21 10 0000 (7)
COURSE NAME	Operations Research	COURSE CODE	21.12.2023 (正) MAH604B
PROGRAM	M.Sc. Mathematics	CREDITS	1
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. Aparna Vyas	NAME OF COURSE COORDINATOR	Dr. Aparna Vyas

Note: All questions are compulsory.

Q.NO.		QUESTIONS	MAR KS	CO ADD RES SED	BLO OM' S LEV EL	PI	
	Q1(A)	Give the mathematical and economic structure of linear programming problems. What requirements should be met in order to apply linear programming?	5	COI	BT1	1.1.1 2.1.1	
Solve the following LP method: Minmize Z Subject to the constraints $2x_1$ $2x_1$ $3x_1 + 2x_1$		Minmize $Z = 3x_1 + 5x_2 + 4x_3$ Subject to the constraints $2x_1 + 3x_2 \le 8$ $2x_1 + 5x_2 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$	10	CO3	ВТ3	1.1.1 2.1.1 3.1.1	
PART-B	Q2(A)	A company sells two different products A and B, making a profit of Rs 40 and Rs 30 per unit, respectively. They are both produced with the help of a common production process and are sold in two different markets. The production process has a total capacity of 30,000 manhours. It takes three hours to produce a unit of A and one hour to produce a unit of B. The market has been surveyed and company officials feel that the maximum number of units of A that can be sold is 8,000 units and that of B is 12,000 units. Subject to these limitations, products can be sold in any combination. Formulate this problem as an LP model to maximize profit.	5	CO2	BT2	1.1.1 2.1.1	

	2(B)	Committee and the Committee of the Commi	subset in \mathbb{R}^n . Then show that the set containing linear combination of points in S is the convex set S .	10	CO4	BT4	1.1.1 2.1.1
J. J. C.	Q3	A compar products t capacities respective 180, 120 costs (in respective factory) Factory Determine	hy has factories at F_1 , F_2 and F_3 that supply to warehouses at W_1 , W_2 and W_3 . The weekly of the factories are 200, 160 and 90 units, ly. The weekly warehouse requirements are and 150 units, respectively. The unit shipping upees) are as follows: Warehouse Warehouse Warehouse W_1 W_2 W_3 Supply F_1 16 20 12 200 F_2 14 8 18 160 F_3 26 24 16 90 Demand 180 120 150 e the optimal distribution for this company in minimize its total shipping cost.	15	CO3 CO4	BT3	1.1.1 3.1.1
PART-C	Q4(A)	jobs to be takes to permatrix. Jobs E How shou	3 9 18 13 6 10 7 2 2 2 0 7 11 9 7 12	10	CO3 CO4	BT4	1.1.1 2.1.1 3.1.1
receptor	4(B)	ABC Ice Greater Kan Delhi. The South Del supplied displays the and the for De A For B C D What rout	Cream Company has a distribution depot in ailash Part I for distributing ice-cream in South ere are four vendors located in different parts of lhi (call them A, B, C and D) who have to be ice-cream every day. The following matrix he distances (in kilometres) between the depot ur vendors: To Depot A B C D Pot 3.5 3 4 2 3.5 4 2.5 3 3 4 4.5 3.5 4 2.5 4.5 4 2 3 3.5 4 4 2 12 5 3.5 4 4 2 13 3.5 4 4 2 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10	CO2 CO4	BT4	1.1.1 2.1.1
DAR I		Se	*****	ığ.			

P/		Find the range of values of p and q that will render the entry $(2, 2)$ a saddle point for the game:					, ,				
H			Player B					5	CO3	втз	1.1.1
PART-D		Player A		B_1		B_2	B_3	5	COS	ь13	2.1.1
			A_1	2		4	5				
			A_2	10		7	q				
	Q5(A)		A_3	4		p	6				
		Solve the zero matrix is	sum g	ame for t			hose pay off				
		Player B									
				B_1	9.	B_2	B_3				1.1.1
		Player A	A_1	1		-1	3	10	CO3	BT4	2.1.1
			A_2	2		<u>-1</u>	2		0.00		3.1.1
			A_3	-1		0	0				
			A_4	-2	.1 1	0	4				
	r (m)	Obtain the best strategies for both players and the value									
	5(B)	of the game. We have five jobs, each of which must go through the							ļ		
		machines A, B and C in the order ABC. Processing times						2			
		(in hours) is as follows:									ŀ
		Job	1	2	3	4	5		1.000000 00		1.1.1
1				-				15	CO1	вт3	2.1.1
		Machine(A)	5	7	6	9	5	75.7.5	CO3		3.1.1
		Machine(B)	2	7	5	5	3 7				
1000		Determine the sequence for the jobs that will minimize						i			
	06(4)										
	Q6(A)								CO2	вт3	
			Discuss the various aspects of data required to formulate the problem of sequencing two jobs on <i>m</i> machines.								1.1.1
4 24	6(B)										2.1.1
REAL PROPERTY.	V(2)	the president	10000	ER BORD TO			de ale ale ale ale ale ale al	ale de de de de	Indiana de la		

***** END

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIECNES (Program-Physics)

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM/SESSION	11.12.2023 (I)
COURSE NAME	Classical Mechanics	COURSE CODE	PHH502B-
PROGRAM .	M. Sc. Physics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Ananna Bardhan	NAME OF COURSE COORDINATOR	Dr. Ananna Bardhan

Note: All questions are compulsory.

	20,							
Q.NO		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI		
PART-A	Q1(a)	What are inertial and non-inertial frames? Show that if a frame is an inertial frame, then a frame, moving with constant velocity relative to it, is also inertial.	04	CO1	BT2			
	Q1(b)	What is center of mass? Show that in the absence of external forces, the velocity of center of mass remains constant.	05		BT4			
	QIO	A particle moves under a force $F = -\left(\frac{K}{r^2}\right)\hat{r}$. Prove that the angular momentum of the particle is conserved. If $F = (2xy + z^2)\hat{\imath} + x^2\hat{\jmath} + 2xz\hat{k}$ newton, then show that it is conservative. Calculate the amount of work done by this force in moving the particle from $(0,1,2)$ to $(5,2,7)$.	06		BT5			
PART-B	Q2(a)	Determine the degrees of freedom for the following cases: (a) Five particles moving freely in a plane (b)Two particles connected by rigid rod moving freely in a plane.	02	CO2	BT4			
	Q2(b)	Discuss and derive Gauge invariance of the Lagrangian.	07		BT4			
	Q2(e)	A cylinder of radius and mass m rolls down an inclined plane making an angle θ with the horizontal. Set up the Lagrangian and find equation of motion.	06		BT5			
PART-C	Q3(a)	Show that if the central force is defined by $F = -\left(\frac{K}{r^2}\right)$, where K is force constant, then the path of the particle is a conic. Also show that the conic is an ellipse, parabola, hyperbola and circle.	18	u.	BT3			
	Q3(b)	A particle of mass 50 gm moves under an attractive central potential of magnitude 4r ³ dynes. The angular momentum is equal to 1000gmcm ² /s. (i) Find the effective potential energy. (ii) Find the total energy for circular motion.	07	CO3	BT5			
	Q4	Deduce the expression for reduced mass and equation of motion of a two-particle system to one particle system. Calculate the reduced mass of CO molecule. If Sun collapsed to form a black hole, what effect would this event have on the orbit of the earth?	10		BT5			

	Q5(a)	Discuss in detail the canonical transformations. Deduce the expressions for transformation equations for all the possible generating functions.	15	8.3	ВТ3
PART-D	Q5(b)	Show that the following transformations are canonical (i) $Q = q \ tanp \ P = \log(sinp)$ (ii) $Q = p \ tanq \ P = \log(sinp)$. 05	CO4	BT5
	'Q6	What do you understand by stable and unstable equilibrium? Establish the Lagrangian and deduce the Lagrange's equations of motion for small oscillations of a system with stable equilibrium.	15		ВТ3

DEPARTMENT OF SCIENCES Physics Program

"End Term Examination, Dec 2023"

SEMESTER	I	DATE OF EXAM	18.12.2023
SUBJECT NAME	Physics of Electronic Devices	SUBJECT CODE	РНН504В
BRANCH	Physics	SESSION	工
TIME	3 hrs	MAX. MARKS	100
PROGRAM	M.Sc	CREDITS	4
NAME OF FACULTY	Dr. Shiv Kumar Dixit	NAME OF COURSE COORDINATOR	Dr. Shiv Kumar Dixit

SET -A

Note: All questions are compulsory.

feedback?

BLO CO OM' MAR ADD Q.NO. QUESTIONS S KS RES LEV SED EL The intrinsic resistivity of germanium at room temperature is 1(a) $0.47~\Omega$ -cm. The electron and hole mobilities at room temperature are 0.39 and 0.19 m²/V.s. respectively. Calculate the density of 2.1 CO₁ BT3 electrons in the intrinsic semiconductors. Also calculate the drift velocities of these charge carriers for a field of 10 KV/m. 1.1 CO₁ Define conductivity (σ) and leakage current in a semiconductor. BT1 1(b) 1 1(c) What are majority and minority carrier current? How these depend on temperature? Explain. A pure semiconductor (Si) is doped with donor impurity of 1:106. Find conductivity due to 1.2 BT3 CO1 5 majority and minority carriers. Given total number of atoms in Si = 5×10^{22} atoms/cm³, Intrinsic concentration $n_i = 1.5 \times 10^{10}$ atoms/cm³, $\mu_n = 1300 \text{cm}^2/\text{V.s.}$, $\mu_p = 500 \text{cm}^2/\text{V.s.}$ An amplifier has a bandwidth of 100 KHz and a voltage gain of 1(d) 2.1 50. What will be the bandwidth and gain with a 4% negative 5 CO₁ BT2

	2(a)	Elaborate Avalanche and Zener breakdown mechanism.	5	CO2	BT2	1.2.
	2(b)	Define current gain in CE, CB and CC configuration and explain CB configuration with diagram.	5,	CO2	BT2	1.1. 1,
	2(c)	Explain base width modulation and punch through phenomenon in transistor.	5	CO2	BT2	3.1.
	Q.3	For the emitter bias network find I_B , I_C , V_{CE} , V_C , V_E , V_B , and V_{BC} . Given $V_{ce} = +20V$, $R_B = 430k\Omega$, $R_C = 2k\Omega$, $C_1 = 10\mu F$, $R_E = 1$ k Ω , $C_E = 40$ μF , $G_E = 50$, $G_E = 10$ $G_$	5+5+ 5	CO3	ВТЗ	2.1.
PA	Q.4	An audio frequency amplifier is to be designed for operating over a range of 20 Hz to 20 KHz. Calculate the value of input coupling capacitor C_1 if the total series resistance (Rs) is $10K\Omega$.	1 1	CO3	BT1	2.1.
PART-B	Q.5	Explain RC coupled amplifier, its features, frequency response with diagram. Discuss the effect of negative feedback on gain and bandwidth of the amplifier.	10+5	CO3	BT3	2.1.
	Q6.	(i) Compare and explain class A and Class B power amplifiers with diagram.(ii) Why class C amplifier is called tuned amplifier? Explain with diagram.	10+5	CO4	BT4	2.2.
	Q7.	Draw the figure and explain Class D power amplifier.	10	CO4	BT2	2.2.
	Q8.	For harmonic distortion reading of D_2 =0.1, D_3 =0.02, and D_4 = 0.01, with I_1 = 4 A and R_C = 8 Ω , calculate the total harmonic distortion, fundamental power component, and total power.	10	CO4	ВТ3	2.1.

MANAY BACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM/SESSION	20.12.2023(I)
COURSE NAME	Mathematical Physics	COURSE CODE	PHH501B - 37
PROGRAM	M.Sc. Physics	CREDITS	<u> 4</u>
TIME DURATION	3 hours	MAX. MARKS	100
NAME OF FACULTY	Dr. Moditma	NAME OF COURSE COORDINATOR	Dr. Moditma

Q.N	10.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PART-A	Q.1	Determine the eigen values of the matrix $\mathbf{A} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	5	CO1	BT2	1.4.2
A-LA	Q.2	Determine whether the matrix $A = \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$ can be diagonalized. If yes, determine the diagonalizing matrix P .	10	CO1	BT2	1.4.2
	Q.3	Solve the differential equation $(x^3 + 3x^2y)dx + (3x^2y + y^3)dy = 0$	8	CO2	BT4	1.4.2
PART-L	0.4	Consider the linear differential equation $\frac{dy}{dx} + 2y \ tanx = sinx$ Determine the integrating factor and hence solve the differential equation.	7	CO2	BT2	1.4.2
P	Q.5	Write the expression for Legendre's differential equation. Obtain the form of recurrence relation and hence deduce the functional form of Legendre's polynomial.	2+8+10 =20	CO3	BT4	1.4.2, 10.1.1
PART-C	Q.6	Consider the differential equation $y'' + 2y = 0$ What is the order of this differential equation? Determine the recurrence relation by assuming a power series solution and hence solve the differential equation.		CO3	BT4	1.4.2, 10.1.1

		Total and Asia and Asia		•		
	Q.7	Find the Laplace transform of $f(x) = 1 + \sin(2x)$.	5	CO4	BT2	1.4.2
PA	Q.8	Show that the Fourier transform of Gaussian function is also Gaussian.	10	CO4	BT2	1.4.2
PART-D	Q.9	Write the Fourier series expansion of a periodic function with period 2L. In the limit $L \rightarrow \infty$ show that the series expansion can be written as a complex Fourier Integral. Also obtain expressions of Fourier Integral for even and odd functions.	4+10+6 =20	CO4	BT4	1.4.2,
		****** END	*****	*****	****	

DEPARTMENT OF SCIENCES

A

"End-Term Examination, December-2023"

SEMESTER SUBJECT NAME	I COMPUTATIONAL METHODS AND PROGRAMMING	DATE OF EXAM SUBJECT CODE	22-12-2023 PHS505B
BRANCH TIME PROGRAM NAME OF FACULTY	Physics 8:30 AM to 10:00 AM MSc Dr. Sandeep Kumar	SESSION MAX. MARKS CREDITS NAME OF COURSE COORDINATOR	Morning 50 2 Dr. Sandeep Kumar
000 000as 100	7		U

Note: All questions are compulsory.

vote: All que		stions are compulsory.				
Q.I	NO.	QUESTIONS		CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Create a matrix of zeros with 5 rows and 3 columns.	2	CO1	BT1	2.1
F14	1(B)	Create the row vector of odd numbers through 29.	2	CO1	BT2	5.2
PART-A	1(C)	Create two different vectors of the same length and add them.	2	CO1	BT1	3.3, 2.1, 7.1
A	1(D)	Create a 4 x 4 matrix and display the second row of and the third column.	2	CO1	BT1	2.2, 4.3
	1(E)	Create a 4x1 vector A of zeros using the zero command.	2	CO1	BT1	8.1, 10. 1
PART-B & P	Q2	 a) Using ezplot command, plot y = 4cos²(πx) for values x = 0: π/10: 2π b) Define the following function using syms: f(x) = x²ex - 5x³ Compute the integral with respect to x and second derivative with respect to x. 	5+5	CO2	BT2, BT1	2.1, 10. 2
ART	- Q3	a) Find the general solution of the following ODE: $dy/dt + y\sin(t) = \tan(2t)$	5+5	CO2	BT3	8.1, 11. 3

· ·	8.1, 11. 3
	BT4

END

MANAY RACHNA UNIVERSITYZ

SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES (PHYSICS)

"End Semester Examination, DEC-2023"

SEMESTER	III	DATE OF EXAM/SESSION	12.12.2023 (II)
COURSE NAME	Nuclear and Particle Physics	COURSE CODE	РНН601В
PKOGRAM	M. Sc. Physics	CREDITS	4
TIME	3Hrs	MAX. MARKS	100 .
NAME OF FACULTY	Dr. Ananna Bardhan	NAME OF COURSE COORDINATOR	Dr. Ananna Bardhan

Note:	All qu	uestions are compulsory.			Save whit	W)
Q.NO		QUESTIONS	MAR KS	CO ADDRE SSED	BLOOM'S LEVEL	PI
	1a	If the nuclear force is charge independent and a neutron and a proton form a bound state, then why is there no bound state for two neutrons? What information is obtained from it?	04		BT4	
PART-	16	Si_{14}^{27} and Al_{13}^{27} are mirror nuclei having ground states except for charge. If their mass difference is 6 MeV, estimate the radius, neglecting the proton-neutron difference.	05	CO1	BT4	
	1e	Calculate the binding energies for K^{39} and Ca^{39} from semi empirical binding energy equation. What do you infer from these energies about the relative stabilities.	06		BT4	
PART-	2a	Determine the J^P for the ground state of B_5^{11} , Sc_{21}^{45} and Kr_{36}^{84} using the shell model diagram	05		BT4	
PA	2b	Explain and deduce an expression for liquid drop model. Explain all the terms explicitly and their contribution in semi – empirical mass formula.	10	CO2	ВТ3	
PART-C	3a	How are matrix elements used to calculate the transition rates for beta decay processes? Are there situations where parity is not conserved in beta decay, and if so, under what conditions? Explain the concept of forbidden beta transitions.	10+5		ВТ3	561
PAR	3b	Discuss selection rules, Decay constants and transition probability during a gamma decay.	15	CO3	BT5	
	4	How does the energy conservation is maintained during internal pair creation. Also explain the phenomena of nuclear isomerism.	05		BT4	
AF	5a	Determine the number of quarks of the atom Be_4^9 .	02		ВТ3	
•	5b	Complete the reactions: (i) ${}_{0}^{3}Li+? \rightarrow {}_{1}^{7}Be + {}_{0}^{1}n$ (ii) ${}_{1}^{35}Li+? \rightarrow {}_{16}^{32}S + {}_{2}^{4}He$ (iii) ${}_{4}^{4}Be + {}_{2}^{4}He \rightarrow 3{}_{2}^{4}He + {}_{0}^{1}n + ?$ (iv) ${}_{1}^{79}Br + {}_{1}^{2}H \rightarrow ? + 2{}_{0}^{1}n$	08		ВТ3	
PART-D	6a	Why must the quark in a hardon have different colors? Would they have to have different colors if their spins were 0 or 1 rather than ½?	04	CO4 ·	ВТ3	
/d	6b	Allocate the isospin to the strange particles from the following reactions: (i) $\pi^- + p \rightarrow \lambda^0 + K^0$ (ii) $\pi^+ + n \rightarrow \lambda^0 + K^+$	04		BT4	
	6c	Out of the two following reactions, which reaction is allowed. Support your answer with justification. (i) $p \to \pi^0 + e^+ + \nu_e$ (ii) $e^+ + \nu_e \to \mu^+ + \nu_\mu$	04		BT5	
	6d	What are elementary particles. Discuss the Gell Mann Nishijima scheme used for the classification of elementary particles.	13		BT3	

DEPARTMENT OF SCIENCES

"End-Term Examination, December-2023"

A

SEMESTER	$\mathrm{III}^{\mathrm{rd}}$	DATE OF EXAM	16-12-2023
SUBJECT NAME	Electrodynamics and Plasma Physics	SUBJECT CODE	PHH602B
BRANCH	Physics	SESSION	Afternoon
TIME	12.30 PM - 03.30PM	MAX. MARKS	100
PROGRAM	MSc	CREDITS	4
NAME OF FACULTY	Dr. Sandeep Kumar	NAME OF COURSE COORDINATOR	Dr. Sandeep Kumar

Note: Al.	questions	are	compui	sorv.
-----------	-----------	-----	--------	-------

INO	te: All qui	estions are compulsory.	Sact				
Q.N	VO.	QUESTIONS	MARKS	-co	- Tom	The same	
			MAKIKS	ADDRE SSED	ВТ	PI.	
	Q.1(a)	Given point P (-2, 6, 3), and vector $\vec{A} = y\hat{\imath} + (x+z)\hat{\jmath}$, express P and \vec{A} in cylindrical and spherical coordinates. Evaluate \vec{A} at P in the Cartesian, cylindrical, and spherical systems.	9	COI	BT1, BT3	1.11., 2.1.1, 2.2.1,4.1.1	
PART-A&B	1(b)	Given the field $\vec{H} = \rho z cos \phi \hat{a}_{\rho} + e^{-2} sin \frac{\phi}{2} \hat{a}_{\phi} + \rho^{2} \hat{a}_{z}$ at point $(1, \pi/3, 0)$, find (i) $\vec{H} \cdot \hat{a}_{\rho}$ (ii) $\vec{H} \cdot \times \hat{a}_{\phi}$	6	COI	BT3	1.11., 2.1.1, 2.2.1,4.1.1	
\&B	Q.2 (a)	Discuss the wave propagation in lossy dielectrics. Obtain an expression for \vec{E} .	9	CO2	BT1, BT4	1.11., 2.1.1, 2.2.1,4.1.1	
	2(b)	A region $0 \le z \le 2 m$ is occupied by an infinite slab of permeable material $(\mu_r = 2.5)$. If $\vec{B} = 10y\hat{a}_x - 5x\hat{a}_y$ Wb/m² within the slab, determine (i) \vec{J} (ii) \vec{M}	6	CO2	BT5	1.11., 2.1.1, 2.2.1,4.1.1	
	Q.3(a)	What is gauge transformations? Explain in detail.	6	CO3	BT1, BT4	1.11., 2.1.1, 2.2.1,4.1.1	
) 	Q3(b)	Find the charge and current distributions that would give rise to the potentials $V = 0$, $A = \begin{cases} (\mu_0 k/4c)(ct - x)^2 \hat{z}, for x < ct, \\ 0, for x > ct, \end{cases}$ where k is a constant and $c = 1/\sqrt{\epsilon_0 \mu_0}$	6	CO3	BT5	1.11., 2.1.1, 2.2.1,4.1.1	
PART-C	Q3©	Discuss the concept of retarded potentials for non-static case and prove that they verify the inhomogeneous equations	8	CO3	BT2	1.11., 2.1.1, 2.2.1,4.1.1	
	Q.4(a)	Obtain the expressions for Liénard-Wiechert Potentials.	6	CO3	BT2, BT4	1.11., 2.1.1, 2.2.1,4.1.1	
	Q.4(b)	Deduce an expression for Larmor's formula for a non-relativistic accelerated charge.	9	CO3	BT2, BT3, BT4	1.11., 2.1.1, 2.2.1,4.1.1	
PART	Q.5(a)	Discuss in detail the concept of the temperature in plasma. What are the necessary conditions for an ionized gas to be plasma?	8	CO4	BT2, BT3, BT4	1.11., 2.1.1, 2.2.1,4.1.1	
Ö	Q.5(b)	What is Plasma Debye length? Discuss it in detail and obtain an expression for it.	6	CO4	BT2, BT3, BT4	1.11., 2.1.1, 2.2.1,4.1.1	

	Deduce Debye length λ_D and the number of particles in Debye sphere N_D for the following cases: (a) glow discharge with $n=10^{18}$ m ⁻³ , $KT_e=3$ eV, (b) The earth's ionosphere, with $n=10^{11}$ m ⁻³ , $KT_e=0.3$ eV. (c) What is the place $0.00000000000000000000000000000000000$	6	CO4	BT2, BT3, BT4	1.11., 2.1.] 2.2.1,4.1.1
2.0(a)	What is the plasma Oscillation? Deduce an expression for plasma frequency with the help of mass conservation of continuity.	9	CO4	BT2, BT3,	1.11., 2.1.1 2.2.1,4.1.1
Q.6(b)	Write a short note on magnetic confinement and inertial confinement in plasma.	,		BT4	, 1.1.1
	plasma.	0	CO4	BT2, BT3, BT4	1.11., 2.1.1, 2.2.1,4.1.1

MANAV RACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	ш	DATE OF EXAM/SESSION	19/12/2023 (
COURSE NAME	Advance solid-state physics	COURSE CODE	PHH603B	
PROGRAM	M.Sc. (Physics)	CREDITS	4	
TIME DURATION	3 Hrs	MAX. MARKS	100	
NAME OF FACULTY	Dr. Deepti Maikhuri	NAME OF COURSE COORDINATOR	Dr. Deepti Maikhuri	

Note: All questions are compulsory. Use of scientific calculator is allowed during the exam.

[SET - B]co **BLOOM'S** QUESTIONS MARKS O NO. ADDRESSED Obtain an expression for density of states of free BT2, BT3, PART A electrons in a metallic specimen. For an electron in a 9+6 CO₁ BT5 metallic specimen, calculate the density of energy states below 2eV. What is effective plasma permittivity? Derive an expression for it and interpret its physical significance. Show that Debye's potential $\psi(r) = \frac{e}{4\pi\varepsilon_0} \frac{\exp(\frac{-r}{\lambda})}{r}$, BT1, BT2, CO₂ RT 5+5+5 2 BT4 is solution of the equation $\nabla^2 \psi(r) = \frac{\psi(r)}{r_D^2} = \frac{n_0 e^2}{\varepsilon_0 k T_e} \psi_r$, where r_D is the Debye's radius. what is meant by local field on dielectric and how it is calculated for a cubic structure? Deduce Clausius -Mosotti relation and explain, its use in predicting the BT3, CO3 BT4.BT5 6+9+5 dielectric constants of solids. Find the total polarizability of CO_2 , if its susceptibility is $0.985 \times 10^{-3} C^2 / Nm^2$. Density of CO2 is 1.977Kg/m3 PARTC At what frequency do the real and imaginary parts of the polarizability become dominant? Illustrate distribution around that frequency. Show that the BT2, BT3, imaginary part of the dielectric constant is the measure 5+5+5 CO₃ BT4 of dielectric loss. Delve into the theory of dielectrics when subjected to an

electric field. Derive an equation for independent dielectric constant. Given of 1.6 for an elemental semiconduct spectrum, calculate the polarizability with an atomic density of 3.1 x 10 ²¹ /cm	a refractive index or in the visible of the material 3.			
Describe Heisenberg's interaction of the molecular field. Relate exchange interaction and Ferromagnetic Curie curie temperature of Fe is 1043K. A atoms, when in the metallic form, have Bohr magneton/atom. Fe is BCC with a=0.286 nm. Calculate (a) the saturat (b) the Curie constant (c) the Weiss magnitude of the internal field or Describe Langevin's theory of paramagnamagnetic susceptibility of a femploying quantum statistics. Approx must be the magnetic induction for energy to be comparable to the therm temperature? Assume μ _m =5μ _B .	gral to the Weiss temperature. The Assume that iron te moments of two lattice parameter, ton magnetization field constant (d) 4+8+8 agnetism. Obtain tree electron gas timately how large or the orientation	C O4	BT3, BT4, BT5	
Differentiate among ferromagnetic, fantiferromagnetic materials. Utilizing model, derive the susceptibility exantiferromagnetic substance both about Neel temperature. or Explain the magnetic theory at the atour an in-depth analysis of all the three or magnetic moments. A paramagnetic atom/m³. The magnetic moment of eaction and an analysis of all the dipole moments and all the paramagnetic atom/m³. The magnetic moment of eaction and an analysis of all the dipole moments atom/m³. The magnetic moment of eaction and all the dipole moments are discovered as a second and a second and a second and a second and a second as a second and a second	the two-sublattice pressions for an ve and below the mic level. Provide tigins of permanent material has 10 ²⁸ ch atom is 1.8x10 susceptibility at ent of a bar of this	CO4	BT3, BT4, BT5	

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIECNES (Program-Physics)

"End Semester Examination, Dec-2023"

SEMESTER	3 rd	DATE OF EXAM/SESSION	21/12/2023
COURSE NAME	Synthesis & Characterization Technique	COURSE CODE	РНН605В
PROGRAM	M.Sc. Physics	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Anshuman Sahai	NAME OF COURSE COORDINATOR	Dr. Anshuman Sahai

Note: All questions are compulsory

[SET B]

-			T			
- Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	Pl
A-T	Q1(A)	Explain the working of CVD.	7.5		BT2	
	1(B)	With the help of neatly labeled diagram, explain the working of RF sputtering technique.	7.5	CO1	ВТ3	
	Q2(A)	Explain the criteria on which you differentiate between bulk, thin films, and nano materials?	7.5		BT2	
PART-B	2(B)	Explain the method of Bottom up approach to synthesize the nanomaterials	7.5	CO2	BT2	
	3(A) vis	Give principle, construction and working of Ultra-violet visible (UV-vis) spectroscopy. What are the applications of UV-visible in modern material science research?	10		BT3, BT4	
PART-C	3(B)	Give principle, construction and working of Raman spectroscopy. What are the applications of Raman spectrometer in Nano-science and nano-technology?	10	CO3	BT3, BT4	
	4(A)	Explain the working of X-ray diffraction methods.	5	15.	BT3	
3	4(B)	Explain the working of FTIR spectroscopy. How will you characterize the power materials? How this technique is better than conventional Infrared spectrophotometer.	10		ВТ3	
PART D	5 (a m (b	(a) Give principle, construction and working of TEM machine.(b) How the low temperature help to generate the image.(c) Describe the all vacuum pumps attached to it for generate the Ultra high vacuum.	5+5+10	CO4	BT3, BT4	
PA	6	(a) Give principle, construction and working of SEM machine. (b) How the elemental analysis can be obtained from the SEM. Describe the applications of SEM.	10+5		BT2, BT3. BT4	

MANAV RACHNA UNIVERSITY

SCHOOL OF LAW

DEPARTMENT OF LAW

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	8/12/2023 (I)
COURSE NAME	Legal English-I	COURSE CODE	LWH106/LWH127
PROGRAM	BA LL.B/BBA LL.B	CREDITS	4
TIME DURATION	3 HOURS	MAX. MARKS	100
NAME OF FACULTY	DR SK BOSE	NAME OF COURSE COORDINATOR	DR SK BOSE

Note: There are four sections in the paper. Attempt all questions from each part.

Q.NO.		QUESTIONS	MAR KS	CO ADDRE SSED	BLOOM' S LEVEL
	Q1	Explain- Ignorantia facti excusat; Ignorantia juris non-excusat.	5	CO1	BT2
PART-A	Q2(A)	In the case of ADM Jabalpur v. Shivkant Shukla, the word 'law' in the expression 'procedure' established by law' (Art 21) means?	5	CO3	BT4
ni.	Q2(B)	Literature plays pivotal role in shaping law-How far do you agree?	5	CO2	BT2
	Q3	Discuss the scope of law and literature.	5	CO2	. BT2
PART-B	Q4(A)	How has the play "The Merchant of Venice" been influential in shaping the attitudes towards the legal system?	5	CO2	BT3
	Q4(B)	What is your view about Franz Kafka's "The Trial"?	5	CO3	BT2
PART-C	Q5	You are hosting a talk show called "Legally Speaking" where you invite speakers/experts to talk on various issues/topics on relevant domain. As a host, prepare a script outlining points or questions which you wish to discuss with your guest speakers/experts in your upcoming episode. Follow a suitable format	7+3	CO4	BT4
	Q6	Write an email to the Managing Director of WAT Company Pvt. Ltd. New Jersey to recommend your friend for a suitable job. In your letter introduce yourself and say what you are doing, describe the role your friend is interested in, and explain why he/she is suitable for the job.	2+3+5	CO4	BT3
	Q7(A)	Prepare your CV as a law student which is to be submitted for an upcoming internship program.	5	CO3	ВТ3
	Q7(B)	Write down the Preamble of Indian Constitution as it is mentioned in the Constitution.	5	CO2	BT2
	Q7(C)	Discuss some DOs and DON'Ts of Advocacy.	5	CO3	BT2