

School of Applied Sciences, Department of Physics, Manay Rachna University, Faridabad

Report on International Collaborative Research at Pohang Accelerator Laboratory, South Korea, during 18th -24th December 2022

Name of the Principal Investigator: Dr Aditya Sharma

Name of M.Sc (Physics, III sem.) Student conducted the experiments: Ms. Janhavi Sharma

Brief Profile of the Principal Investigator:

Dr. Aditya Sharma, Faculty In-Charge of University Instrumentation Centre (UIC-MRU) & Assistant Professor in department of Physics, has more than 10 years of experience in research/teaching of Nano-Hybrid materials based on Pelletron & Synchrotron accelerators. He worked as Research Scientist at Korea Institute of Science and Technology (KIST), Seoul, and Post-Doctoral researcher at Pohang Accelerator Laboratory (PAL), South Korea. He has published more than 60 research papers in SCI/SCOPUS journals, 05 book chapters and actively functioning as an editor/reviewer of various international journals. He also has couple of major/minor research projects funded by different funding agencies of Govt. of India. He has also received international travel grants (02 times) from foreign countries (South Korea).

The objective of the International research collaboration:

To enrich the students of Manav Rachna Univeristy, with the concept & design of modern machines, their utilization in the Nano-Hybrid materials for probing their functionality in the futuristic applications; such as, Gas-sensors, Solar-cells, Batteries, photo-catalyst and bio-medical. The collaborative research efforts were aimed to provide hand-on training to the research student, developing the new material using the sophisticated techniques (which are less-accessible in our country) for the futuristic technology, and to fill the gap between academia and research centers/laboratories of high standard. Importantly, the visit was aimed to plan and design the research projects for Indo-Korean joint research scheme for the year of 2023.

Experiments conducted and the expected outcomes:

The experiments were started by loading the previously prepared samples (by the students and P.I) in high vacuum chamber. Thin films of SrVO3, InGaZnO, ZnSnO3 were deposited using the RF-magnetron sputtering technique on Si and Quartz substrates using the experimental facilities of IUAC, New Delhi. Some of the thin films were also ion-implanted (to modify their Fermi-level and adjust their orbital hybridization) with 200 keV Ag ion beams. Such samples were subjected to the X-ray interaction to probe the local electronic structure, hybridization of frontier orbitals and evaluate the local structural disorders caused by the ion-implantation. P.I of the research and the scientist of the inviting laboratory are able to justify the experimental results with the expectations made before the experiments. Several research papers in SCI/SCOPUS journals will be communicated after analysis/simulation of the experimental data. Moreover, the students get trained to operate the machines, using the vacuum techniques and production/focusing of the X-rays. This will help to the students to develop their future research career. The experiments were finalized with a vote of thanks to the Korean Scientist (Dr. Hyun-Joon Shin) who invited us (Dr. Aditya Sharma and M.Sc. student of Manav Rachna University), and helped to perform the experiments. Importantly, planning of the Indo-Korea joint research projects (for Na ion battery materials) is done for the coming year 2023. Hope to get the favorable results.

A few glimpses of the session are attached herewith.

