

PROGRAMME BOOKLET

B.Tech Electronics and Communication Engineering (ECU 01)

(Academic Session: 2022-2023)

(Syllabus: Scheme)

Department of Electronics and Communication Engineering

School of Engineering

Manav Rachna University

MANAV RACHNA UNIVERSITY

VISION

To educate students in frontier areas of knowledge enabling them to take up challenges as ethical and responsible global citizens

MISSION

- To impart outcome based holistic education
- To disseminate education in frontier areas
- To produce globally competitive, ethical and socially responsible human resources
- To produce human resources sensitive to issues of Environment and Sustainable Development
- To develop Environment and Sustainable development as a thrust area of research and development.

QUALITY POLICY

To continuously learn from the best practices, study role models and develop transparent procedures for empowerment of stakeholders.

STRATEGIC OBJECTIVES

• To facilitate, enhance & promote innovation in curriculum design and delivery and have Outcome-oriented Learning Culture.

- To promote Research Environment and Management Practices.
- To enhance the quality of the student learning experience.
- To provide Resources and Infrastructure for Academic Excellence.

Department of Electronics and Communication Engineering

VISION

To be a leading Centre of Excellence for Education, Research and Development in the Field of Electronics with an aim to develop talent and technology through Innovation, meet the needs of Industry and contribute in development and betterment of Mankind.

MISSION

- Build capacity for applying cutting edge technologies in the development of new E & C products and services.
- Collaboratively develop programs/courses for industry/society at large.

• Nurture the national and international competitiveness of the students by facilitating international internships and industrial project opportunities.

• Foster an ecosystem conducive to innovations

• Strengthen and provide support in sustaining a healthy society by improving the quality of life through application of technology.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

• Right aptitude for Industry Research and Academics as per the professional career choice.

• Learning skills for developing competencies in research and development and understanding the applications for product design and innovation.

- Technical mindset for engineering and scientific approach for solving and impending technical challenges.
- Professional ethics and positive attitude to work in a Team.
- Continuous improvement, growth and lifelong learning.
- Program Outcomes (POs) / Program Specific Outcomes (PSOs)

• Program Outcomes / Program Specific Outcomes describe graduate attributes i.e. what students are expected to know or will be able to do when they graduate from a program. The POs / PSOs of B. Tech. in Electronics & Computer Engineering

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2.Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7.Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10.Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12.Life- long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO1: Ensure integration of Electronics and Computer technology thereby enabling in designing and developing integrated solutions.

PSO2: Develop skills and tools for bridging the gap between research and Industrial needs by increasing industry interface

SEMESTER - 1											
SUBJECT	SUBJECT	PRE- REQU ISITE	**OFFE RING DEPAR TMENT	COURSE TYPE (CORE/E LECTIVE / UNIVERS ITY COMPUL SOPY)	T	Т	D	0	NO. OF CONTAC T HOURS PER WEFK	NO. OF CRE DITS	
CHH144B-T	CHEMISTRY	NA	CHEM	CORE	3	0	0	0	3	3	
CHH144B-P	CHEMISTRY LAB	NA	CHEM	CORE	0	0	2	0	2	1	
MAH103B	MATHEMATICS – I (CALCULUS AND LINEAR ALGEBRA)	NA	МАТН	CORE	3	1	0	0	4	4	
ECH103B-T	BASICS OF ELECTRICAL & ELECTRONICS ENGINEERING	NA	ECE	CORE	3	1	0	0	4	4	
ECH101B-P	BASICS OF ELECTICAL & ELECTRONICS ENGINEERING LAB	NA	ECE	CORE	0	0	2	0	2	1	
CSH101B-T	PROGRAMMING FOR PROBLEM SOLVING USING C	NA	CSE	CORE	3	1	0	0	4	4	
CSH101B-P	PROGRAMMING FOR PROBLEM SOLVING USING C LAB	NA	CSE	CORE	0	0	2	0	2	1	
MEW102B	ENGINEERING GRAPHICS & DRAWING	NA	ME	CORE	0	0	2	0	2	1	
LWS324	INDIAN CONSTITUTION	NA	LAW	CORE	1	0	0	0	1	0	
CDS105	PROFESSIONAL COMMUNICATION -I	NA	CDC	CORE	2	0	0	0	2	0.5	
	ТОТА	L			13	3	8	0	24	19	

SEMESTER I

Course Title/Code	CHEMISTRY (CHH144B-T)							
Course Type	Core							
L-T-P Structure	3-1-0							
Credits	4							
Pre-requisites	NA							
Course Objective	Students would be able to learn the basics of atomic structure, intermolecular forces, and importance of pH, stereochemistry, learn the basics of spectroscopic techniques and apply the basics of these topics to industrial and domestic purposes.							
Course Outcom	nes (COs)	Mapping						
CO1	Apprehend the importance of thermodynamic properties of Gibbs free energy and entropy functions	Skill development						
CO2	Describe the water chemistry, theories of corrosion and concepts of metallurgy through Ellingham diagram	Skill development						
CO3	Analyze the basics of stereochemistry and the importance of green synthesis with emphasis on its twelve principles	Skill development						
CO4	Analyze the importance of spectroscopic techniques and its applications in various fields to deduce structures	Skill development						

SECTION-A

Atomic Structure: Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ 2. Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Periodic properties: Electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital, energies of atoms in the periodic table, polarizability and Polarization, Fajan's Rule, oxidation states and their stabilities.

SECTION-B

Intermolecular forces and potential energy surfaces: Ionic, dipolar and van der waals interaction, equations of state of real and gases and critical phenomenon. Use of free energy in chemical equilibria: Thermodynamic functions: entropy and gibbs free energy; estimations of entropy and free energies. Relationship between Free energy and emf Cell potentials. Nernst equation and application. Acid base, oxidation reduction and solubility equilibria, Water chemistry: Introduction - Use of water for Industrial and domestic purposes, sources of water supply, Hardness of water, degree of hardness and its estimation by EDTA methods). PH-value of water, disinfection of water Softening of hard water (Lime-Soda method, calgon methods. corrosion: introduction, cause and theories: Dry and wet theory and prevention methods, use of free energy consideration in metallurgy through Ellingham Diagram.

SECTION-C

Stereochemistry: Representations of three dimensional structures, introduction to the terms: achirality, chirality, enantiomers, diastereomers, optical activity, structural isomers and stereoisomers, relative and absolute configurations, conformational analysis of ethane and n-butane. Structural isomerism in transition metal compounds.

Organic reactions and synthesis using conventional and green approach: Introduction to Green Chemistry, its 12 principles, Synthesis of commonly used molecules: Aspirin, Ibuprofen, bio-diesel and bio-ethanol.

SECTION-D

Spectroscopic techniques and applications: Principles of spectroscopy and selection rules. Electronic spectroscopy. Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging.

Suggested Text /Reference Books

- 1. University chemistry, by B. H. Mahan
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane (iii)Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 3. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- Physical Chemistry, by P. W. Atkins Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, 5th Edition <u>http://bcs.whfreeman.com/vollhardtschore5e/default.asp</u>

Course Code	Course	Cours e Outco mes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	-	3	-	-	-	3	-	-	-	-	-	-	-
	CHEMISTRY-	CO2	3	-	3	-	-	-	3	-	-	-	-	-	-	-
CHH144B-1	I	CO3	3	-	3	-	-	-	3	-	-	-	-	-	-	-
		CO4	3	-	3	-	-	-	3	-	-	-	-	-	-	-

Course Title/Code	CHEMISTRY LAB (CHH144B-P)								
Course Type	Core								
L-T-P Structure	0-0-2								
Credits	1								
Pre-requisites	NA								
Course Objective	Students would be able to learn basic of atomic structure, intermolecular forces, and importance of pH, stereochemistry, learn basic of spectroscopic techniques and apply basic of these topics to industrial and domestic purpose.								
Course Outcom	es (COs)	Mapping							
CO1	Develop innovative methods to produce soft water for industrial use and potable water at cheaper cost.	Skill development							
CO2	Substitute metals with conducting polymers and also produce cheaper biodegradable polymers to reduce environmental pollution.	Skill development							
CO3	Design economically and new methods of synthesis nano materials.	Skill development							
CO4	Apply their knowledge for protection of different metals from corrosion	Skill development							
CO5	Have the knowledge of converting solar energy into the most needy electrical energy efficiently and economically to reduce the environmental pollution.	Skill development							

List of Experiments

- Determination of chloride content of water
- Colligative properties using freezing point depression
- Determination of the rate constant of a reaction
- Synthesis of a polymer (UF, Resol, PMMA).
- Determination of surface tension and viscosity.
- Determination of cell constant and conductance of solutions.
- Saponification/acid value of oil.
- Adsorption of acetic acid by charcoal.
- Determination of the partition coefficient of a substance between two immiscible liquids.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	-	-	3	-	-	-	-	-	-	-	-	-	-
		CO2	3	-	-	3	-	-	-	-	-	-	-	-	-	-
CHH144 B-P	CHEMISTRY- LAB	CO3	3	-	-	-	-	-	3	-	3	-	-	-	-	-
		CO4	3	-	-	-	-	-	3	-	3	-	-	-	-	-
		CO5	3	-	-	-	-	-	3	-	3	-	-	-	-	-

Course Title/Code	MATHEMATICS-1 (Calculus and Linear Algebra) (MAH103B)								
Course Type	Core								
L-T-P Structure	3-1-0								
Credits	4								
Pre-requisites	NA								
Course Objective	The objective of this course is to familiarize the prospective engineers with techniques in calculus, multivariate analysis and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines								
Course Outcom	es (COs)	Mapping							
CO1	Calculate radius of curvature and Evolutes. Write the Taylor series & Maclaurin series expansion of function of single variable and apply in solving other mathematical problems. Find the maximum/minimum values of a function.	Skill development							
CO2	Apply the tool Fourier series for learning advanced Engineering Mathematics.	Skill development							
CO3	Determine gradient vector fields and find potential functions and evaluate line integrals directly and by the fundamental theorem.	Skill development							
CO4	Calculate rank and inverse of a matrix and solve system of linear equations using Cramer's Rule, Gauss elimination and Gauss Jordan method.	Skill development							

SECTION -A

Calculus: Curvature (Cartesian, Parametric and Polar coordinates), Curvature at origin, Centre of curvature, Evolutesand involutes, Higher order partial order derivative, Homogeneous function and Euler's theorem, Differentiation of composite functions, Taylor's theorem for function of several variables, Maxima-Minima, Lagrange's method of multipliers

SECTION --B

Sequences and series: Tests for convergence of series (comparison, ratio, root, integral, Raabe's, logarithmic), Alternating series, Absolute convergence, Conditional convergence. Fourier series: Half range sine and cosine series, Parseval's theorem.

SECTION -- C

Vector Calculus: Gradient, Directional Derivative, divergence, curl and their applications, line integral, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

SECTION -D

Matrices: Inverse and rank of a matrix, System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; linear transformation, orthogonal transformation, Eigenvalues and eigenvectors, Diagonalization of matrices, Cayley-Hamilton Theorem.

Suggested Text/Reference Books

- 1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi,2008.
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
		CO1	3	3	-	-	-	-	-	-	-	-	-	3	-	-
MAH103	MATHEMATICS (CALCULUS	CO2	3	3	-	-	-	-	-	-	-	-	-	3	-	-
В	ÀND LINEAR ALGEBRA)	CO3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
		CO4	3	3	-	-	-	-	-	-	-	-	-	3	-	_

Course Title/Code	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	(ECH103B-T)						
Course Type	Core							
L-T-P Structure	3-1-0							
Credits	4							
Pre-requisities	NA							
Course Objective	Understand the working principles of basic electrical circuits and electronic devices (diode, Transistors, OP-Amp etc.), analyze their behavior and implement the knowledge to design their various applications.							
Course Outcom	es (COs)	Mapping						
CO1	Apply the fundamental concepts of Basic Electrical circuits.	Employability						
CO2	Apply the concepts and working principles of Diodes for its various applications	Employability						
CO3	Demonstrate familiarity with electronic devices viz., Transistors, Feedback Amplifiers and Oscillators and design implementation.	Employability/ Skill Development						
CO4	Analyze and Design Operational Amplifiers and real-life applications using 555 Timer.	Employability/ Skill Development						

SECTION A

DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff's current and voltage laws, analysis of simple circuits with dc excitation. Superposition Theorem, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits. AC Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel) resonance.

SECTION B

Diodes and Applications covering, Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Breakdown Mechanisms, Zener Diode – Operation and Applications; Opto-Electronic Devices – LEDs, Photo Diode and Applications.

SECTION C

Transistor Characteristics covering, Bipolar Junction Transistor (BJT) – Construction, Operation, Amplifying Action, Common Base, Common Emitter and Common Collector Configurations. Transistor Amplifiers and Oscillators, Classification, Small Signal Amplifiers – Basic Features, Common Emitter Amplifier, Coupling and Bypass Capacitors. Feedback Amplifiers – Principle, Advantages of Negative Feedback, Topologies, Current Series and Voltage Series Feedback Amplifiers; Oscillators – Classification, RC Phase Shift, Wien Bridge, High Frequency LC and Non-Sinusoidal type Oscillators.

SECTION D

Operational Amplifiers and Applications covering, Introduction to Op-Amp, Differential Amplifier Configurations, CMRR, PSRR, Slew Rate; Block Diagram, Pin Configuration of 741 Op-Amp, Characteristics of Ideal Op-Amp, Concept of Virtual Ground. IC 555 and its applications as astable and mono-stable multi-vibrators.

Text Books:

(i) D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.

(ii) Debashis De, "Basic Electronics', Pearson, Education India, 2010.

Reference Books:

(i) D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

(ii)L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.

(iii) David. A. Bell (2003), Laboratory Manual for Electronic Devices and Circuits, Prentice Hall, India.

(iv) Santiram Kal (2002), Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India 3. Thomas L. Floyd and R. P. Jain (2009), Digital Fundamentals by Pearson Education.

(v) Paul B. Zbar, A.P. Malvino and M.A. Miller (2009), Basic Electronics - A Text-Lab. Manual, TMH 5

Course Code	Course	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	CO1	3	3	-	-	-	-	-	-	-	-	-	3	3	-
ЕСН103В- Т		CO2	3	3	-	-	-	-	-	-	-	-	-	3	3	-
		CO3	3	3	3	3	-	-	-	-	3	3	-	3	3	-
		CO4	3	3	3	3	-	-	-	-	3	3	-	3	3	-

Course Title/Code	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB (I	ECH103B-P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	Understand the working principles of basic electrical circuits and electronic devic Transistors, OP-Amp etc.), analyze their behavior and implement the knowledge t various applications.	es (diode, to design their
Course Outcom	es (COs)	Mapping
CO1	Describe the electrical properties and characteristics of various materials, used in the electrical appliances , devices , instruments	Skill Development
CO2	Design circuits using diodes and transistors	Skill Development
CO3	Realize circuits using opamps	Skill Development

LIST OF EXPERIMENTS

- Familiarization with the lab Equipment's.
- To verify the Kirchhoff's Voltage Law and Kirchhoff's Current Law
- To experimentally verify Thevenin Theorem
- Introduction to CRO and measuring various parameters of Sine wave
- Characteristics of PN junction diode in Forward and reverse bias configuration using Zener diode.
- Truth table Verification of AND and OR gate using diode
- To implement the diode in Half wave and full wave rectifier and analyse the circuit
- To plot the characteristics of Transistor in CE Configuration
- RC Phase Shift Oscillator
- Op Amp as Inverting and Non-Inverting Amplifier
- Minor project on 555 Timer Application

B.Tech. ECE, Manav Rachna University Page 13

Cours e Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH10 3B-T		CO1	3	3	-	-	-	-	-	-	-	-	-	-	3	-
	BASICS OF ELECTRICAL AND ELECTRONICS LAB	CO2	3	3	3	-	-	-	-	-	-	3	3	-	3	-
		CO3	3	3	3	-	-	-	-	-	-	3	3	-	3	-

Course Title/Code	PROGRAMMING FOR PROBLEM SOLVING USING C (CSH101B-T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisites	NA	
Course Objective	Students will be able to construct a program of moderate complexity from a speci	fication
Course Outcomes (C	COs)	Mapping
CO1	Analyze and apply Test Driven Development approach to design programs.	Skill development
CO2	Apply the programming language constructs as per given problems	Skill development
СОЗ	Apply C programming language constructs on open source platform	Skill development
CO4	Learn to work in a team using different online platform for program development	Skill development

SECTION-A

Programming and UNIX-Students will learn the basics of programming using Scratch, they will learn to use statements, expressions, conditions, selection, iteration, variables, functions, arrays, threads and events. In addition, they will be introduced to basic UNIX commands under Bash. Introduction to Programming, test driven development, Scratch: Introduction, statements, expressions, conditions, selection, iteration, variables, functions, arrays. UNIX: Basic commands- pwd, ls, cd, rm, cat, less, mkdir, rmdir; permissions, root. C language: statements, expressions, conditions, selection iteration, variables, functions, arrays.

SECTION-B

Applying programming constructs-Students will learn how to write programs that satisfy unit tests. The instructor will build the unit tests, demonstrating how to break a problem down into smaller components. In the labs and homework, students will construct programs that satisfy the unit tests. Students become familiar with the constructs of the C programming language. Moving to C: Data Types, constants, and variables, Statements, Expressions, Conditions, Selection, iteration, Functions and recursion Decision making within a program, Conditions, Relational Operators, Logical Connectives, if statement, if-else statement, Loops: while loop, do while, for loop, Nested loops, Infinite loops, Switch statement, structured Programming Arrays; One dimensional arrays: Array manipulation; Searching, Insertion, Deletion of an element from an array; Finding the largest/smallest element in an array; Null terminated strings as array of characters, Standard library string functions-Introduction to Top-down approach of problem solving, Modular programming and functions, Standard Library of C functions, Prototype of a function: Formal parameter list, Return Type, Function call, Block structure, Pasing arguments to a Function: call by reference, call by value, Recursive Functions, arrays as function arguments .

SECTION-C

Practical programming-During the third quarter of the class, students will begin building their own programs by decomposing problems into smaller tasks and writing unit tests that will check to see that the program accurately accomplishes the task using Test Driven Development. They will then write the program that satisfies their own unit tests. Students will learn to apply the constructs of the C programming language to create programs. Students will learn to apply these programming techniques: Structure variables, initialization, structure assignment, nested structure, structures and functions, structures and arrays: arrays of structures, structures containing arrays, unions, Break, Continue and Goto, Type Conversion; Enumerations; Macros. Students will be able to use these techniques to develop programs

SECTION-D

Memory Management and Abstraction-During the final quarter, students will be introduced to dynamic memory allocation and dynamic data structures including: dynamic arrays. They will consolidate their ability to use the C programming techniques they have learned in the earlier Sections. Address operators, pointer type declaration, pointer assignment, pointer initialization, pointer arithmetic, functions and pointers, Arrays and Pointers, pointer arrays, pointers and structures, dynamic memory allocation, Software Configuration Management, Modules, CUnit, GIT, SCRUM, MAKE. Dynamic Memory Allocation.

Suggested Text / Reference Books

- 1. The C Programming Language, Brian Kernighan and Dennis Ritchie
- 2. The Unix Programming Environment
- 3. Pro Git
- 4. Help Pages
- 5. Eclipse C/C++ Development Guide
- 6. Wikipedia Pages
- 7. Test-driven development, http://en.wikipedia.org/wiki/Test-driven_development
- 8. Unit testing, http://en.wikipedia.org/wiki/Unit_testing

Tool Web Sites

- 1. Eclipse, https://eclipse.org/users/
- 2. Git, http://git-scm.com/
- 3. GCC, https://gcc.gnu.org/onlinedocs/gcc-4.9.3/gcc/
- 4. Make
- 5. Unix
- 6. Web tutorials
- 7. Harvard's CS50, <u>https://courses.edx.org/courses/HarvardX/CS50x3/2015/info</u>

Cours e Code	Course	Course Outcom es	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
COLL	PROGRAMMING	CO1	3	3	-	-	-	-	-	-	-	-	-	3	3	-
CSH	FOR PROBLEM	CO2	3	3	-	-	-	-	-	-	-	-	-	3	3	-
101В- Т	SOLVING USING	CO3	3	3	3	-	3	-	-	-	3	-	-	3	3	-
1	С	CO4	3	3	3	-	3	-	-	-	3	-	-	3	3	-

Course Title/Code	PROGRAMMING FOR PROBLEM SOLVING USING C LAB (CSH10)	1B-P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	NA	
Course Objective	Students are able to construct a program of moderate complexity from a speci	fication
Course Outcomes (COs)	Mapping
CO1	Analyze and apply Test Driven Development approach to design programs.	Skill Development
CO2	Apply programming language constructs as per given problems	Skill Development
CO3	Apply C programming language constructs on open source platform	Skill Development
CO4	Learn to work in a team using different online platform for program development	Skill Development

List of experiments

- Sequential Statements Variables, Blocks
- Unix Commands: pwd, mkdir, cd, ls, less, touch, cp,move, cat, rm, rmdir –r etc.
- Moving to C Using nano and gcc.
- Project on Calculator Using Agile Methodology, Nano, Cunit, Git, Scrum, Agile Methodology,
- Nano, Gcc, Make. Covering Concepts:
- Statements, Functions, Arrays, Structures
- Pointers
- File Handling.

Cours e Code	Course	Course Outcom es	P O1	P O2	P O3	PO 4	P O 5	P O6	P O7	P O8	Р О9	PO 10	PO 11	PO 12	PS O1	PS O2
	PROGRAMMING	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	-
CSH	FOR PROBLEM	CO2	3	3	3	-	3	-	-	-	-	-	-	3	3	-
ТОТВ- Р	SOLVING USING	CO3	3	3	3	3	3	-	-	-	3	-	-	3	3	-
Ĺ	C LAB	CO4	3	3	3	3	3	-	-	-	3	-	-	3	3	-

ourse Title/Code	ENGINEERING GRAPHICS & DRAWING (MEW102B)
Course Type	Core
L-T-P Structure	0-0-2

Credits	1	
Pre-requisitio ns	NA	
Course Objective	Comprehend general projection theory, with emphasis on orthogra three-dimensional objects in two-dimensional views (principal, au and annotate two-dimensional engineering drawings	phic projection to represent xiliary, SECTIONs).Dimension
Course Outcon	nes (COs)	Mapping
1	Use the drawing instruments effectively and able to dimension the given figures	Skill development
2	Appreciate the usage of engineering curves in tracing the paths of simple machine components	Skill development
3	Analyse the concept of projection and acquire visualization skills, projection of points	Skill development

SECTION A

Introduction to Engineering Drawing :Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic Sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales; Orthographic Projections: Principles of Orthographic Projections-Conventions - Projections of Points and lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;

SECTION B

Projections of Regular Solids: Inclined to both the Planes- Auxiliary Views; Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. SECTIONs and Sectional Views of Right Angular Solids : Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the Sectional orthographic views of geometrical solids, objects from industry and dwellings (foundation to slab only)

SECTION C

Isometric Projections: Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Overview of Computer Graphics covering, listing the computer technologies that impact on graphical communication, demonstrating knowledge of the theory of CAD software, Customization & CAD Drawing

SECTION D

Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models.Part editing and two-dimensional documentation of models. Demonstration of a simple team design project that illustrates Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; introduction to Building Information Modeling (BIM).

Suggested Text / Reference Books

- 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House
- 2. Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication

4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers Corresponding set of) CAD Software Theory and User Manuals

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
MENN	ENGINEERING	CO1	3	3	3	-	3	-	-	-	-	3	-	3	3	-
MEW	GRAPHICS AND	CO2	3	3	3	-	3	-	-	-	-	3	-	3	3	-
102 D	DRAWING	CO3	3	3	3	-	3	-	-	-	-	3	-	3	3	-

Course Title/Code	INDIAN CONSTITUTION (LWS324)									
Course Type	Audit	udit								
L-T-P Structure	-0-0									
Credits	0									
Prerequisites	NA									
Course Objective	The objective of this paper is to orient the students ab principles on the Constitution of India.	pout the Basic features and fundamental								
Course Outcome	Dutcomes (COs) Mapping									
CO1	Demonstrate the knowledge and ability to analyze the basic principles of the Constitution of India.									

SECTION-A

Meaning of the constitution law and constitutionalism, Historical perspective of the Constitution of India, Salient features and characteristics of the Constitution of India

SECTION-B

Scheme of the fundamental rights, The scheme of the Fundamental Duties and its legal status, The Directive Principles of State Policy – Its importance and implementation

SECTION-C

Federal structure and distribution of legislative and financial powers between the Union and the States, Parliamentary Form of Government in India – The constitution powers and status of the President of India Local Self Government – Constitutional Scheme in India

SECTION-D

Amendment of the Constitutional Powers and Procedure-The historical perspectives of the constitutional amendments in India-Emergency Provisions: National Emergency, President Rule, Financial Emergency

Cours e Code	Course	Course Outcom es	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO 10	PO 11	PO 12	PS O1	PS O2
LWS 324	INDIAN CONSTITUTION	CO1	-	-	-	-	-	-	3	3	3	3	-	-	-	-

Course Title/Code	PROFESSIONAL COMMUNICATION-I(CDS101B)	
Course Type	Core	
L-T-P Structure	1-0-0	
Credits	1	
Pre-requisities	NA	
Course Objective	To teach students effective listening and speaking skills in real life scenarios	
Course Outcom	es (COs)	Mapping
CO1	Students will be able to develop all-round personality by mastering inter-personal skills to function effectively in different circumstances.	Skill Development
CO2	Students will be able to demonstrate effective communication through grammatically correct	Skill Development
CO3	Students will be able to apply effective listening and speaking skills in real life scenarios.	Skill Development

Unit 1: Attitudinal Communication

1.1 Attitude and its Impact on Communication- 1.2 Courtesy & amp; Politeness in Communication- 1.3 Diversity & amp; Inclusion – Bullying, Cultural Sensitivity, Stereotypes, Sexual Harassment, LGBTQ, Respect, Chivalry, Racial & amp; Gender Discrimination, Disability Harassment, Inclusion.1.4 Power Dressing

Unit 2: Syntactical Communication - I

2.1 Common errors in communication-2.2 Identification of word class-2.3 Errors & amp; rectifications-2.3.1 Article usage-2.3.2.Tenses usage - Present Perfect vs. Past Simple vs. Past Perfect-2.3.2 Subject Verb Agreement

Unit 3: Phonetics

3.1 Impact of First Language Influence

3.2 Tone- 3.3 Intonation-3.4 Rate of Speech-3.5 Pronunciation: Vowels & amp; Consonant sounds

Unit 4: Developing Communication Skills -I (Listening & amp; Speaking)

4.1 Concept of LSRW: Importance of LSRW in communication.-4.2 Listening Skills : Real Life challenges, Barriers to Listening-4.3 Speaking : Self Introduction, Interview, GD, Resume

Cours e Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
CDC10	DDOFECCIONAL	CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
1P COMMUNICATI	PROFESSIONAL	CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
	COMINICATION-I	CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-

SEMESTER II

				COURSE TYPE (CORE/EL ECTIVE /				NO. OF CON TAC T HOU	
		PRE-	**OFFERING	UNIVERSI TY				RS PER	NO OF
CODES	SUBJECT NAME	TE	DEPARIMEN T	ORY)	L	т	Р	WEE K	CREDITS
PHH102B-		12	-	0111)		-	-		CILLDIIIS
Т	PHYSICS FOR ENGINEERS	NA	PHY	CORE	3	1	0	4	4
PHH102B-	PHYSICS FOR ENGINEERS	274	DIUI	CODE		0			
Р	LAB MATHEMATICS II	NA	РНҮ	CORE	0	0	2	2	1
MAH106B	(DIFFERENTIAL EOUATIONS)	MATHEM ATICS-I	MATH	CORE	3	1	0	4	4
ECH106B-	ELECRONIC DEVICES & CIRCUITS	NA	ECE	CORE	3	1	0	4	4
ECH106B- P	ELECRONIC DEVICES & CIRCUITS LAB	NA	ECE	CORE	0	0	2	2	1
CSH112B	INTRODUCTION TO DATA STRUCTURE	NA	CSE	CORE	3	1	0	4	4
EDS288	APPLIED PHILOSOPHY								
EDS289	APPLIED PSYCHOLOGY	NA	EDU	ELECTIVE	1	1	0	2	2
EDS290	APPLIED SOCIOLOGY								
EDS166	PROFESSIONAL ENGLISH ADVANCE/PROFESSIONAL ENGLISH BASIC	NA	HUM	CORE	2	0	2	4	3
CHH145	ENVIRONMENTAL SCIENCES	NA	CHEME	AUDIT	2	0	0	2	0
CDO106	PROFESSIONAL COMMUNICATION-II	NA	CDC	CORE	2	0	0	2	1
TOTAL					19	5	6	30	24

Course Title/Code	PHYSICS FOR ENGINEERS (PHH102B- T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisite s	NA	
Course Objective	To provide the student with a broad understanding of the physical principles of the them develop critical thinking and quantitative reasoning skills, to empower them to and critically about scientific problems and experiments	universe, to help o think creatively
Course Outcon	nes (COs)	Mapping
CO1	Students would be able to describe semiconductors, fermi level, various types of diodes and demonstrate its applications in electronics.	Employability
CO2	Measure various parameters using CRO	Skill development
СОЗ	Calculate electrical parameters using various measurement techniques	Employability
CO4	Analyze the Electromagnetic Wave equation and its applications	Skill development

SECTION-A

Semiconductors: Intrinsic and extrinsic semiconductors, Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics), Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for optoelectronic devices.

SECTION-B

Measurements basics and CRO: Standards of measurement-classification of errors-errors analysis. Static Characteristics- Accuracy, precision, sensitivity, linearity, resolution, hysteresis threshold, input impedance, loading effects etc. - dynamic characteristics. CATHODE RAY OSCILLOSCOPE: Cathode Ray Oscilloscope: introduction-CRO, Cathode ray tube, Block diagram of CRO, Electrostatic Deflection, Measurement of phase, voltage and frequency using CRO, basic CRO circuits, dual trace and dual beam Oscilloscope, sampling and storage oscilloscopes.

SECTION-C

Measurements Techniques: DC measurements: DC voltmeter, Ammeter Ohmmeter, digital type voltmeter, AC measurement: Ammeter, Ohmmeter, AC voltmeter using rectifier, true RMS Voltmeter, chopper amplifier type voltmeter. Electronic voltmeter, electronic multi-meter, Q meter, RF Power measurement. Advantages of digital meters over analog meters, Digital voltmeter, Resolution and sensitivity of digital meters, digital frequency meter, period measurement, universal counter, measurement of pressure and displacement.

SECTION-D

Electromagnetic waves: The wave equation, Plane electromagnetic waves in vacuum, their transverse nature and polarization, relation between electric and magnetic fields of an electromagnetic wave; energy carried by

electromagnetic waves and examples. Momentum carried by electromagnetic waves and resultant pressure. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

Suggested Text Books

- 1. Electrical & Electronics Measurement & Instrumentation by A K Sawhney, Dhanpat Rai & Company
- 2. David Griffiths, Introduction to Electrodynamics
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	3	-	-	-	-	-	-	-	3	3	-
PHH102B-	PHYSICS FOR	CO2	3	3	-	3	-	-	-	-	-	-	-	3	3	-
Т	ENGINEERS	CO3	3	3	-	3	-	-	-	-	-	-	-	3	3	-
		CO4	3	3	-	3	-	-	-	-	-	-	-	3	3	-

Course Title/Code	PHYSICS FOR ENGINEERS LAB (PHH102B-P)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisitie s	NA	
Course Objective	To provide the student with a broad understanding of the physical principles of the them develop critical thinking and quantitative reasoning skills, to empower ther and critically about scientific problems and experiments	ne universe, to help n to think creatively
Course Outcon	nes (COs)	Mapping
CO1	Students will be able to analyze various characteristics of the semiconductor devices and circuits.	Skill development
CO2	Demonstrate the working of electronic components and devices.	Skill development
CO3	Students will be able to measure component values and parameters of the circuits using different measuring devices	Skill development
CO4	Apply the knowledge in designing the application based projects.	Skill development

List OF Experiments

- Study the IV characteristics of a PN junction diode.
- Error analysis in measurement on simple electrical circuits.
- Study and use of digital CRO.
- Measurement of frequency and voltage using CRO
- Mini Project
- Measurement of Phase difference using CRO.
- Study of DC / AC analog voltmeters and their comparison
- Use of digital multimeter and sensitivity measurement.
- Measurement of Q-factor L, R using LCRQ meter.
- To measure a displacement using Linear Variable differential transformer (LVDT)

CO-Mapping

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	-	-	-	-	3	3	-	3	3	-
PHH102	PHYSICS FOR	CO2	3	3	-	-	-	-	-	-	3	3	-	3	3	-
B- P	LAB	CO3	3	3	-	-	-	-	-	-	3	3	-	3	3	-
		CO4	3	3	-	-	-	-	-	-	3	3	-	3	3	-

Course Title/Code	MATHEMATICS – II (DIFFERENTIAL EQUATIONS) (MAH	106B)
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
PRE-REQUI SITES	MATHEMATICS-1 (Calculus and Linear Algebra)	
Course Objective	The objective of this course is to familiarize the prospective engineer ordinary and partial differential equations and Numerical Methods. to deal with advanced level of mathematics and applications that we disciplines.	ers with techniques in It aims to equip the students ould be essential for their
Course Outcon	nes (COs)	Mapping
CO1	Solve ordinary differential equations(ODE)	Skill development
CO2	Apply the tool of power series for learning advanced Engineering Mathematics.	Skill development
CO3	Find roots of polynomial and transcendental equations by using numerical techniques.	Skill development
CO4	Identify and impute the interpolating polynomial for equispaced and unequispaced intervals	Skill development

SECTION - A

Differential equations: Exact, linear and Bernoulli's equations, Euler's equations, Second order linear differential equations with variable coefficients, method of variation of parameters, Cauchy-Euler equation; Applications of differential equations – electrical circuits and orthogonal trajectories.

SECTION - B

Partial Differential Equations – Formulation of differential equation, classification of differential equation, solution of differential equation by method of direct integration, by separation of variable. Application of PDE – Initial value problem, boundary value problem, formulation and solution of wave equation (1 D and 2D), heat equation (1 D and 2D) etc.

SECTION - C

Numerical Methods – 1: Solution of polynomial and transcendental equations – Bi SECTION method, Newton-Raphson method and Regula-Falsi method. Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange's formulae.

SECTION - D

Numerical Methods – 2: Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules. Solution of Differential equations Euler, RK.

Textbooks/References:

1. S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, 1993.

2. R. Haberman, Elementary Applied Partial Differential equations with Fourier Series and Boundary Value Problem, 4th Ed., Prentice Hall, 1998.

3. Manish Goyal and N.P. Bali Transforms and Partial Differential Equations, University Science Press, Second Edition, 2010.

4. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006. W. E. Boyce and R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley India, 2009.

5. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.

6. G.F. Simmons and S.G. Krantz, Differential Equations, Tata McGraw Hill, 2007.

7. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 2nd Edition, Reprint 2012.

8. S.S. Sastry, Introductory methods of numerical analysis, PHI, 4th Edition, 2005.

9. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

10. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 35th Edition, 2010.

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	3	-	-	-	-	-	-	-	-	3	-	-
MAH10	MATHEMATICS – II (DIFFERENTIAL	CO2	3	3	3	-	-	-	-	-	-	-	-	3	-	-
6B	ÈQUATIONS)	CO3	3	3	3	3	-	-	-	-	-	-	-	3	-	-
		CO4	3	3	3	3	-	-	-	-	-	-	-	3	-	-

Course Title/Code	ELECTRONIC DEVICES & CIRCUITS (ECH106B-T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisites	NA	
Course Objective	To provide the students with an introductory and broad treatment of the field of E Engineering to facilitate better understanding of the devices, instruments and sens applications.	lectronics ors used in various
Course Outcom	es (COs)	Mapping
CO1	To apply the fundamental concepts of Basic Electronics circuits.	Skill development
CO2	Characterize & apply the concepts and working principles of various diodes for real time applications	Employability/Skill development
CO3	Demonstrate the implementation of transistors and FETs in various circuits	Employability/Skill development
CO4	To demonstrate the circuit of power supplies and voltage regulators	Employability/Skill development

SECTION-A

Diodes and Applications : Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; PN Diode Switching time, Breakdown Mechanisms, Transition and Diffusion Capacitance Zener Diode – Operation and Applications; Tunnel Diode ,Schottky diode ,Varicap diode Opto-Electronic Devices – LEDs, Photo Diode and Applications; Diode Circuits: Rectifiers: Half Wave and Full Wave Rectifiers with and without Filters; shaping circuits: Clipping circuits; Series, Shunt, Combinational, Clamping circuits; Series and Shunt; Applications; Voltage multiplier

SECTION-B

Transistor Characteristics covering, Bipolar Junction Transistor (BJT) – Construction, Operation, Common Base, ommon Emitter and Common Collector Configurations, Amplifying Action, Transistor Biasing: Selection of Operating Point, Stability factor Fixed biased configuration, Emitter-bias configuration Voltage Divider Bias Configuration; Bias compensation: Diode Compensation, Thermistor Compensation and sensistor Compensation;

SECTION-C

Field Effect Transistor (FET) – Construction, Characteristics of Junction FET, Depletion and Enhancement Type Metal Oxide Semiconductor (MOS) FETs

SECTION-D

Regulated and Switching Power Supplies: Characteristics of Regulated Power Supply, Stabilization, Voltage regulators: Discrete Transistor Voltage Regulator: Series Volatge Regulator: Transistor series voltage regulator or Emitter follower voltage regulator, Transistor Shunt Voltage Regulator, IC voltage Regulator

Text Books:

- 1. Millman & Halkias, "Integrated Electronics", McGraw Hill Publications, 1992.
- 2. Boylestad &Nashlesky, "Electronic Devices & Circuit Theory", PHI, 10th Edition.
- 3. Albert Malvino & David J. Bates, "Electronic Principles", Tata McGraw Hill, 7th Edition 2007
- 4. Floyd, "Electronic Devices", PHI, 7th Edition.

Reference Books:

- 1. Sedra, Smith, 'Microelectronic Circuits', Oxford University Press, fifth edition, 2004.
- 2. Paul Horowitz and Winfield Hill, 'The art of electronics', Cambridge university press, third edition, 2011.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	-	-	-	-	-	-	-	3	3	3
ECUIO(D T	ELECTRONIC DEVICES &	CO2	3	3	-	3	-	-	-	-	-	-	-	3	3	3
ECHIU0B-I	CIRCUITS	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	3	-	-	-	-	-	-	-	3	3	3

Course Title/Code	ELECTRONIC DEVICES & CIRCUITS LAB (ECH106B-P)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	To provide the students with an introductory and broad treatment of the f Engineering to facilitate better understanding of the devices, instruments applications.	ield of Electronics and sensors used in various
Course Outcom	es (COs)	Mapping
CO1	Demonstrate the working of electronic components and various measuring instruments.	Employability/Skill development
CO2	Analyze the characteristics of diode and implement its various applications	Employability/Skill development
CO3	Analyze the characteristics of Transistors and their applications	Employability/Skill development
CO4	To demonstrate the circuit of power supplies and voltage regulators and apply the knowledge in designing an Application based Project	Employability/Skill development

List of Experiments:

• Familiarization with electronic components and measuring instruments.

• Plot the forward and reverse V-I characteristics of a PN junction diode and calculation of cut-in voltage, static and dynamic resistances.

• Plot the Reverse V-I characteristics of a Zener diode and calculation of cut-in and Zener breakdown voltages. Application of Zener diode as a voltage regulator.

• Implementation of half-wave and full-wave rectifier circuits and measurement of average and rms values of the rectifier output.

• Study the working of a diode as a Clipper, clamper

• Plot the input/output characteristics of a transistor in common Base configuration and calculation of its current amplification factor

• Plot the input/output characteristics of a transistor in common Emitter configuration and and calculate its voltage gain.

- To study the working of transistor in Common Collector configuration as a Buffer.
- Plot the drain characteristics of a JFET
- Study the working of a Regulated power supply
- To design a project based on the above experiments

CO-PO Mapping

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	3	3	-	-	-	-	-	-	3	3	3
	ELECTRONIC DEVICES &	CO2	3	3	3	3	3	-	-	-	-	-	-	3	3	3
ECH106B-P	CIRCUITS	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	INTRODUCTION TO DATA STRUCTURES (CSH112B)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisites	NA	
Course Objective	The course should assess how the choice of data structures and algorithm design performance of programs and choose the appropriate data structure and algority specified application.	gn methods impacts the hm design method for a
Course Outcom	es (COs)	Mapping
CO1	Demonstrate the concept of Dynamic memory management, data types, algorithms, Big O notation.	Skill development
CO2	Describe the hash function and concepts of collision and its resolution methods	Employability/Skill development
CO3	Solve problem involving graphs, trees and heaps	Employability/Skill development
CO4	Apply Algorithm for solving problems like sorting, searching, insertion and deletion of data.	Employability/Skill development

SECTION-A

Data structures and Algorithms: Introduction to Data structure: Concept of data structure, choice of right data structures, types of data structures, Abstract Data types, Introduction to algorithms, how to design and develop an algorithm: stepwise refinement, algorithm analysis, complexity of algorithms Arrays: Introduction, One Dimensional Arrays, two dimensional array, Multidimensional arrays, address calculation of a location in arrays operations defined:

traversal, selection, searching, insertion, deletion, and sorting. Searching: linear search, binary search, Sorting: selection sort, bubble sort, insertion sort, merge sort, quick sort.

SECTION-B

Pointers: Introduction to pointers, Pointer variables, Pointer and arrays, array of pointers, pointers and structures, Dynamic allocation. Linked Lists: Concept of a linked list, circular linked list, doubly linked list, operations on linked lists: traversal, selection, searching, insertion, deletion, and sorting, concepts of header linked lists. Applications of linkedlists.

SECTION-C

Stacks: Introduction to Stacks, array representation of stack, operations on stack: PUSH, POP, Evaluation of Expression: Concept of precedence and associatively in expressions, difficulties in dealing with infix expressions, Resolving precedence of operators and association of operands, postfix & prefix expressions, conversion of expression from one form to other form using stack (with & without parenthesis), Evaluation of expression in infix, postfix & prefix forms using stack. Recursion, Linked list representation of stack, Applications of stacks.

Queues: Queues, Circular queues, array representation of Queues, priority queues, dequeue, circular queue, operations on queue: insertion and deletion, Applications of Queues.

SECTION-D

Non-Linear Structures: Trees definition, characteristics concept of child, sibling, parent child relationship etc, binary tree: different types of binary trees based on distribution of nodes: complete binary tree, binary tree (threaded and unthreaded),operation on binary tree: insertion, deletion, searching and traversal of binary trees, traversing: Preorder, Postorder and Inorder, Introduction to binary search tree, operations and Time complexity on BST: insertion, deletion, searching, Introduction to AVL tree: Concept of balanced trees, balance factor in AVL trees, insertion into and deletion from AVL tree, balancing AVL tree after insertion and deletion, in B trees, Application of trees.

Graphs: Definition, Relation between tree & graph, directed and undirected graph, connected and disconnected graph, Euler graph, Hamiltonian graphs, Representation of graphs using adjacency matrix and list, Depth first and breadth first traversal of graphs, Applications of Graph.

Text Books:

1. Data Structures with C by Seymour Lipschutz ,McGraw Hill Education(India) Private Limited.

2. Data Structures using C by A. K. Sharma, Pearson Publication. Data Structures using C-Yashwant Kanetkar Publication.

Reference Books:

1. Data Structures using C by A. M. Tenenbaum, Langsam, Moshe J. Augentem, PHI Pub.

2. Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman Publisher.

		Cou														
Course Code	Course	rse Out com es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2

	NTRODUCTION	CO1	3	3	-	-	-	-	-	-	-	-	-	3	3	3
CSU112D	TO DATA	CO2	3	3	-	3	-	-	-	-	-	-	-	3	3	3
CSHIIZD	SIRUCIURES	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	3	-	-	-	-	-	-	-	3	3	3

Course Title/Code	APPLIED PHILOSOPHY (EDS288)							
Course Type	Soft Elective							
L-T-P Structure	1-1-0							
Credits	2							
Pre-requisities	NA							
Course Objective	To enable students to - confront the philosophical problems implicit in the experience of self, others and the society. - read critically the philosophy of influential philosophers with respect to society, Science and success in life - understand and apply concepts and theories of moral philosophy. - reflect philosophically and ethically on their own personal, professional and civic lives. -formulate for himself or herself a philosophy of life or world-view consistent with the objectives of liberal society.							
Course Outcomes	Mapping							
CO1	Examine the philosophical problems implicit in the experience of self, others and the society	Skill development						
CO2	Explore the philosophy of influential philosophers with respect to society, Science and success in life	Skill development						
CO3	Demonstrate the understanding of the concepts and theories of moral philosophy. Skill develop							
CO4	Reflect philosophically and ethically on one's own personal, professional and civic lives.							

SECTION A

INTRODUCTION TO PHILOSOPHY: Philosophy: Meaning, Nature and Scope, Practical uses of Philosophy, Branches of Philosophy.

SECTION B

THOUGHTS OF PHILOSOPHERS AND THEIR IMPLICATIONS: General Philosophy of John Dewey, Swami Vivekananda and Rabindra Nath Tagore, Philosophy of life and success: Steve Jobs, N.R. Narayana Murthi, Dr. A.P.J. Abdul Kalam and Muhammad Yunus, Philosophy of Science and technology- Francis Bacon and Martin Heidegger.

SECTION C

PHILOSOPHICAL PERSPECTIVES OF SOCIO-POLITICAL SCENARIO IN INDIA: Nature of Democracy and its implications, Meaning and requirements of National Integration, Universal Human Rights

SECTION D

PHILOSOPHICAL PERSPECTIVES OF RELIGIOUS SCENARIO IN INDIA: Secularism—its nature and implications, Moral Philosophy of religion with special reference to Hinduism, Jainism, Buddhism, Islam, Christianity, Sikhism. Religious pluralism and Religious tolerance.

Reference Books and Readings:

1. Bhatia, K. & Bhatia, B. (1974) The Philosophical and Sociological Foundations of Education. Delhi: Doaba House.

- 2. Brubacher, John. S. (1969). Modern Philosophies of Education, New Delhi: Tata McGraw-Hill
- 3. Dewey, J. (1966). Democracy in Education, New York: Macmillan.
- 4. Ferre, F.(1995). Philosophy of Technology. University of Georgia Press.
- 5. Gandhi, M. K. (1956). Basic Education. Ahmedabad, Navajivan.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
EDS288	APPLIED PHILOSOPHY	CO1	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO2	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO3	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO4	-	-	-	-	-	-	-	3	3	3	3	3	-	-

Course Title/Code	APPLIED PSYCHOLOGY (EDS289)					
Course Type	Soft Elective					
L-T-P Structure	1-1-0					
Credits	2					
Pre-requisiti es	NA					
Course Objective	To define psychology and its application across various fields. - To understand the conceptual framework of attitude and personality along with cherishing out their attitude and personality development. - To conceptualize psychology in social and organizational settings. - To maintain and reform group dynamics.					
Course Outcon	nes (COs)	Mapping				
CO1	Develop critical thinking to understand the application of psychology	Skill development				
CO2	Identify the impact of Stereotyping, prejudice and discrimination in formation of attitude	Skill development				
CO3	Identify major attributes of Personality.	Skill development				
CO4	Understand social psychology and able to solve the inflicts among the group	Skill development				

SECTION A

PSYCHOLOGY: ATTITUDE FORMATION

Psychology: Meaning, nature, and scope, Role of psychology across multi-disciplinary aspects, Introduction: Attitude, Stereotypes, Prejudice, and Discrimination, Formation of attitude and attitude change.

SECTION B

PERSONALITY AND PERSONALITY DEVELOPMENT

Definition of personality and personality development, State/ Trait approach to personality, Bandura's Social-Cognitive theory of personality

SECTION C

SOCIAL PSYCHOLOGY

Introduction to social identity, social cognition, and social influence, social conflicts and its resolutions, Group dynamics: Introduction, formation, types of groups, cooperation, competition, and conflict in groups

SECTION D
ORGANIZATIONAL PSYCHOLOGY

Organizational Psychology: Definition, fundamental concepts and importance, Introduction to job satisfaction, work motivation, and organizational commitment. Introduction to participation, empowerment, and teamwork

References Books and Readings:

1. Arrow, K. J. (1995). Barrier to Conflict Resolution. NY: W. W. Norton.

2. Bandra, A., & Walters, R. H. (1963). Social Learning and Personality Development. New York: Holt, Rinehart, & Winston.

3. Bandra, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice- Hall, Inc.

- 4. Baron, R. A., Byrne, D. (1997). Social Psychology (8th Ed.). Boston, MA: Allyn & Bacon.
- 5. Baron, R. A. (2001). Psychology (5th ed.). London: Pearson.
- 6. Cialdini, R. B. (2001). Influence: Science and Practice (4th Ed.). Boston, MA: Allyn & Bacon.
- 7. Feldman, R. S. (2008). Essentials of Understanding Psychology. New Delhi: Tata McGraw Hill.
- 8. Friedkin, N. (1998). A structural theory of social influence. Cambridge: Cambridge University Press.
- 9. Gage, N. L., & Berliner, D. C. (1992). Educational Psychology (5th Ed.). Boston, MA: Houghton Mifflin Co.
- 10. Hall, C. S., Lindzey, G. & Campbell, J. B. (2004). Theories of Personality (4th Ed.). New York: Wiley.
- 11. Hunt, R. R., & Ellis, H. C. (2006). Fundamentals of Cognitive Psychology. New Delhi: Tata McGraw Hill.

12. McDavid, J. M., & Harari, H. (1994). Social Psychology: Individuals, Groups, and Societies. New Delhi: CBS Publishers.

13. Millward, L. (2005). Understanding Occupational and Organizational Psychology. London: Sage Publications.

14. Morgan, C. T., King, R. A., Weisz, J. R., & Schopler, J. (1993). Introduction to Psychology. (7th Ed.). New Delhi: Tata McGraw Hill.

15. Woolfork, A. E. (2014). Educational Psychology (12th Ed.). Boston: Allyn & Bacon.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
EDS289	APPLIED PSYCHOLOGY	CO1	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO2	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO3	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO4	-	-	-	-	-	-	-	3	3	3	3	3	-	-

Course Type	Soft Elective	
L-T-P Structure	1-1-0	
Credits	2	
Pre-requisities	NA	
Course Objective	To know and understand about the fundamental concepts of sociology and its app To develop the analytical skills of students about ways in which social processes lives. To understand the impact of various processes of social change and assess their in To understand and analyze the social cultural dynamics that contribute to transfor reality To study the various contemporary issues of society. To develop basic research skills in area of sociology.	olications. affect our everyday mpact on society. rmation of Indian
Course Outcome	s (COs)	Mapping
CO1	analyze the social cultural dynamics that contribute to transformation of Indian Society	Skill development
CO2	Develop the necessary skills of social processes which affect our everyday lives.	Skill development
CO3	study and analyze various temporary issues of society and able to provide solutions of social barrier and benefiting the masses.	Skill development
CO4	develop basic research skills in the area of sociology and help to find possible solution of specific social barriers of the society	Skill development

SECTION A

Introduction and Applications of Sociology: Society, Community, Social Institutions, Social Groups, Introduction to Applied Sociology -Sociology and Social Processes-Sociology and Social Change-Sociology and Social Problems Clinical Sociology

SECTION B

Sociological Processes: -Social Stratification, Social Mobility and their impact on society-Socialization, Agents of Socialization, Assessing the effects of Socialization-Social Movements: Concept, Impact of Environmental Movements in India: Chipko Movement, Narmada Bachao Andolan-

SECTION C

Processes and Issues of Social Change: Social Change: Westernization, Urbanization, Privatization, Globalization, Sustainable development-Issues in urban development-Population, poverty, unplanned growth and ecological issues Conflict management: Intergroup: Causes, Resolutions Organizational Conflict, Conflict Management and Grievance Handling

SECTION D

Field Survey & Report Writing:Need, Meaning of Survey-Types of Survey-Steps in Conducting Survey-Data Collection Methods-Salient Features of Report Writing

References: Books and Readings

- 1. Andrew, W. (1997) Introduction to the Sociology of Development. New Jersey, Palgrave Macmillan.
- Berg, L.B. (2001). Qualitative Research Methods for the Social Sciences (4th edition). Boston: Allyn and Bacon
- 3. Bhatia, H.(1970). Elements of Social Psychology. Bombay: Somaiyya Publications Pvt Ltd.
- 4. Bhattacharyya D.K (2009). Organizational Behavior, Oxford University Press, UK.
- 5. Dastupta Driskle(2007) : Discourse on Applied Sociology Volume-II, 2007
- 6. Desai, B Sonalde et al. (2010). Human Development in India: Challenges for a Society in Transition. OUP
- 7. Deshpande, S.(2003). Contemporary India: A Sociological View. New Delhi: Viking.
- 8. Hall R.H (2009). Organizational Structures, Processes & outcomes, Asia: Pearson Education Publications.
- 9. Hodegetts R M. (2009). Organizational Behavior, Macmillan.
- 10. Mc Mihael.P. (1996). Development and Social change: A global perspective. California Thousand Oaks.
- 11. Merton, R and Nisbet, (1976) Contemporary Social Problems, New York: Harcourt, Brace and World.
- 12. Metha, S. (2009). Women and Social Change, Jaipur: Sage.
- Michael Edwards (2011). Civil Society in India, edited The Oxford Handbook of Civil Society, Oxford, Oxford University Press
- 14. Mitra et.al. (2009). Democracy, Agency and Social Change in India, New Delhi: Sage
- 15. Pratt henry Fairchild(2009) : Outline of Applied Sociology, 2009
- 16. Ranjitkumar : Research Methodology, Person Education, Delhi.
- 17. Schaefer, R.T (2004). Sociology a Brief Introduction, (5thed.) New York: McGraw-Hill Inc..

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
EDS290	APPLIED SOCIOLOGY	CO1	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO2	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO3	-	-	-	-	-	-	-	3	3	3	3	3	-	-
		CO4	-	-	-	-	-	-	-	3	3	3	3	3	-	-

Course Title/Code	PROFESSIONAL ENGLISH (EDS166)										
Course Type	Soft Core										
L-T-P Structure	2-0-2										
Credits	3										
Pre-requisities	NA										
Course Objective	The students (A) will be able to articulate (B) communication skills and develop talent (C) for increased understanding of corporate requirement (D).										
Course Outcomes	s (COs)	Mapping									
CO1	To communicate articulately.	Employability, Skill development									
CO2	To show the basics of presentation skills.	Employability, Skill development									
CO3	To exhibit substantive writing skills. Employability, Skill development										
CO4	To demonstrate the procedure of debating skills.	Employability, Skill development									
CO5	To display the developed critical aptitude. Employability, Skill development										

SECTION - A

Lexis: Vocabulary Building: The Concept of Word Formation, Root Words from Foreign Languages and their use in English, Acquaintance with Prefixes & Suffixes from Foreign Languages in English to form derivatives, Synonyms, Antonyms, and Standard abbreviations.

Semantics: Basic Writing Skills: Sentence Structures, Use of Phrase & Clauses in Sentences, Importance of Proper Punctuation, Creating Coherence, Organizing Principles of Paragraphs in Documents, Techniques of Writing Precisely.

SECTION – B

Grammar: Identifying Common Errors in Writing: ubSject-Verb Agreement, Noun-Pronoun Agreement, Misplaced Modifiers, Articles, Prepositions, Redundancies, Clichés

SECTION - C

Technical Writing: Nature & Style of Sensible Writing: Describing, Defining, Classifying, Providing Examples or Evidence, Writing Introduction & Conclusion, Writing Practices: Comprehension, Precis Writing, Essay Writing.

SECTION - D

Oral Communication: Listening Comprehension, Pronunciation, Intonation, Stress & Rhythm, Common Everyday Situations: Conversations & Dialogues, Communication at Work Place, Interviews, Formal Presentation.

Lab Activities

- Exercises based on Grammar
- Exercises based on Semantics
- Telephonic and Face-to-Face Communication
- Listening to Understand (Hearing vs. Listening)
- Business Letters
- Reading/Listening Comprehension
- Essay Writing Session
- Precis Writing Session
- Role Plays
- Business QUIZ based on Lexis and Semantics
- Presentation
- Developing Outlines

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	-	-	-	-	-	3	-	3	3	3	3	-	3	-
	PROFESSIONAL ENGLISH	CO2	-	-	-	-	-	3	-	3	3	3	3	-	3	-
EDS166		CO3	-	-	-	-	-	3	-	3	3	3	3	-	3	-
		CO4	-	-	-	-	-	3	-	3	3	3	3	-	3	-
		CO5	-	-	-	-	-	3	-	3	3	3	3	-	3	-

Course Title/Code	ENVIRONMENTAL SCIENCES (CHH145)									
Course Type	Soft Audit									
L-T-P Structure	2-0-0									
Credits	0									
Pre-requisities	NA									
Course Objective	to make the student identify the areas of environmental degradation to make the student identify the impact of environmental degradation on the surroundings To apply the concepts such as sustainable development in real life. To help the engineering student to correlate his field with various aspects of the environment.									
Course Outcome	es (COs)	Mapping								
CO1	Explain the multidisciplinary dimensions of environmental issues and suggest potential solutions Skill development									
CO2	Discuss about the various types of organisms and draw inferences about their interactions in different e systems Skill development									

SECTION-A

Unit 1: Multidisciplinary nature of environmental studies

Definition, scope and importance, Need for public awareness (OC)

Unit 2: Renewable and Non-Renewable Resources-Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies (OC). Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. (OC)Equitable use of resources for sustainable lifestyles

SECTION-B

Unit 3: Ecosystems-Concept of an ecosystem. Structure and function of an ecosystem. Producers, consumers and decomposers. Energy flow in the ecosystem. Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the Following ecosystem:-Forest ecosystem, Grassland ecosystem Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) (OC),Unit 4: Biodiversity and its conservation• Introduction – Definition: genetic, species and ecosystem diversity.• Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic And option values (OC)Biodiversity at global, National and local levels. India as a mega-diversity nation

Hot-sports of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity (OC)

SECTION-C

Unit 5: Environmental Pollution

Cause, effects and control measures of:-Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution Thermal pollution, Nuclear hazards, Solid waste Management: Causes, effects and control measures of urban and Industrial wastes. (OC), Role of an individual in prevention of pollution. (OC), Pollution case studies. (OC)-Diaster management: floods, earthquake, cyclone and landslides.

Unit 6: Social Issues and the Environment

From Unsustainable to Sustainable development• Urban problems related to energy• Water conservation, rain water harvesting, watershed management • Resettlement and rehabilitation of people; its problems and concerns. CaseStudies• Environmental ethics: Issues and possible solutions.• Climate change, global warming, acid rain, ozone layer depletion, nuclear Accidents and holocaust. Case Studies (OC). • Wasteland reclamation.• Consumerism and waste products.• Environment Protection Act.• Air (Prevention and Control of Pollution) Act (OC)• Water (Prevention and control of Pollution) Act (OC)• Wildlife Protection Act• Forest Conservation Act• Issues involved in enforcement of environmental legislation (OC).• Public awareness (OC).

SECTION-D

Unit 7: Human Population and the Environment• Population growth, variation among nations - Population explosion – Family Welfare Programme • Environment and human health.• Human Rights (OC).• Value Education (OC).• HIV/AIDS (OC).• Women and Child Welfare (OC).• Role of Information Technology in Environment and human health.• Case Studies (OC).*OC = Outcome component Field work • Visit to a local area to document environmental assets river/ forest/grassland/hill/mountain • Visit to a local polluted site-Urban/Rural/Industrial/Agricultural• Study of common plants, insects, birds. • Study of simple ecosystems-pond, river, hill slopes, etc. Any socially relevant problem identification and proposing its possible solution

NOTE: Manav Rachna has adopted five villages, where students would be visiting, will identify the socially relevant issues and work on to provide possible solution.

Course Code	Course	Course Outcom es	Р О 1	P O 2	P O 3	P O 4	P O 5	Р О 6	P O 7	P O 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PSO2
CHH145	ENVIRONMEN TAL SCIENCES	CO1	3	3	3	3	-	3	-	-	-	-	-	-	-	-
		CO2	-	-	3	3	3	-	3	-	-	-	-	-	-	-

Course Title/Code	Professional Communication-II(CDO106)										
Course Type	Softcore										
L-T-P Structure	(0-0-1)										
Credits	1	1									
Pre-requisites	NA										
Course Objective To acquire basic knowledge about aptitude.											
Course Outcomes	Mapping										
CO1	Students will become better at analytics and problem solving	Employability, Skill Development									
CO2	Students will be able to solve aptitude problems quickly utilizing the short cuts	Employability									
CO3	Students will have enhanced level of reasoning, numerical skills and speed	Employability, Skill Development									
CO4	Students will have the ability to 'quickly think on their feet'	Employability									
CO5	Students will have enhanced concentration & thinking ability.	Employability, Skill Development									

SECTION-A – Reasoning Ability

Unit 1: Mental Ability

1.1 Mental Ability Test-1.2 Direction Sense Test-1.3 Blood Relations Test-1.4 Cubes-1.5 Cuboids-1.6 Dice-1.7 Word Problems-1.8 Puzzles- Unit 2: Verbal & Non Verbal Reasoning-2.1 Letter Series-2.2 Set Theory-2.3 Venn Diagram-2.4 Syllogism-2.5 Missing Value in figure-2.6 Practice Test

SECTION-B

Unit 3: Logical Reasoning & Word Puzzles

3.1 Logical Reasoning I-3.1.1. Row Arrangement-3.1.2. Circular Arrangement-3.2 Logical Reasoning II-3.2.1. Arrangement-3.2.2. Puzzles-3.3 Logical Reasoning III-3.4 Practice Test-Unit 4: Personality Development- 4.1 Concept of personality-Concept of personality-Bringing out the best in one's personality

4.2 Self awareness

Different learning styles-Areas of Self awareness-Developing self-awareness-4.3 Goal Setting-Five principles of goal setting-Setting "SMART" goals-6P's of goal setting- SWOT analysis-Short term& Long term goals

SECTION-C

Unit 5: Resume Writing-What, why and how of Resume-Building different SECTIONs of the Resume through projects and activities during the course-Unit 6 : Presentation Skills-Designing the presentation- Audience and content analysis- Delivering the presentation- Preparation, Practice, Performance

SECTION-D

Unit 7: Professional Communication-Email writing-Diction and Speech Clarity-LSRW & Introduction to verbal ability as an assessment tool for employability-Unit 8: Professional Grooming and Professional Etiquette - etiquette - Professional-grooming-Personal Grooming-Courtesy and communication discipline

Text Books/Reference Books:

- 1. A Modern Approach to Logical Reasoning: R S Aggarwal, S Chand & Company Pvt Ltd
- 2. A Modern Approach to Non Verbal Reasoning: R S Aggarwal, S Chand & Company Pvt Ltd
- 3. Developing Management Skills by David A Whetten, Kim S Cameron
- 4. Personality and Soft Skills Development by Rajeev Kumar

5. English for business, 100 tips foe effective communication,By: Dignen, Bob; McMaster, Ian. Planegg: Spotlight Verlag GmbH. 2016. eBook.

6. Presentation Skills for technical professionals: Achieving Excellence, By: Karten, Naomi; Gottesdiener, Ellen. Series: Soft Skills for IT Professionals. Ely, Cambridgeshire, United Kingdom :IT Governance Publishing. 2010. eBook., Database: eBook Collection (EBSCOhost)

Weblinks:

- 1. http://www.indiabix.com/aptitude/questions-and-answers/
- 2. http://www.indiabix.com/non-verbal-reasoning/questions-and-answers/

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CDO10 6		CO1	3	2	_	_	_	_	2	2	2	2	-	2	_	2
	Professional Communicatio n-II	CO2	3	2	3	2	_	_	_	2	2	3	-	2	3	1
		CO3	3	3	2	2	-	_	-	2	-	3	2	2	-	1
		CO4	2	3	3	2	-	-	2	-	-	2	-	2	2	2
		CO5	3	3	2	2	_	_	_	2	_	3	2	2	-	1

				COURSE TYPE (CORE/ELE CTIVE /				
SUBJECT	SUBJECT	PRE- REQUISIT	**OFFERING DEPARTMEN	UNIVERSIT Y COMPULSO				NO. CONT HOU
CODES	NAME	E	т	RY)	L	Т	Ρ	PER W
ECH202B-T	NETWORK THEORY	NA	ECE	CORE	3	1	0	4
ECH202B-P	NETWORK THEORY LAB	NA	ECE	CORE	0	0	2	2
ECH203B-T	ANALOG ELECTRONICS	NA	ECE	CORE	3	1	0	4
ECH203B-P	ANALOG ELECTRONICS LAB	NA	ECE	CORE	0	0	2	2
ECH204B	SIGNALS AND SYSTEMS	NA	ECE	CORE	3	1	0	4
ECH208B-T	DIGITAL ELECTRONICS	NA	ECE	CORE	3	1	0	4
ECH208B-P	DIGITAL ELECTRONICS LAB	NA	ECE	CORE	0	0	2	2
CDO231	PROFESSIONAL COMPETANCY ENHANCEMENT-I	NA	CDC	CORE	4	0	0	4
RD0505	INTRODUCTION TO RESEARCH	NA	ECE	CORE	0	1	0	1
FLS101	SPANISH-I							
FLS102	GERMAN-I							
FLS103	FRENCH-I	NA	CFL	ELECTIVE	2	0	0	2
				TOTAL	1 9	5		29
ECW111B	PROGRAMMIG FUNDAMENTALS USING LINUX	NA	ECE	CORE	0	0	2	2

Course Title/Code	NETWORK THEORY (ECH202B-T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisites	NA	
Course Objective	To synthesize an electrical network from a given impedance/adm	ittance function.
Course Outcome	s (COs)	Mapping
CO1	To demonstrate a thorough understanding of the fundamental concepts and techniques used in the two-port network terminology.	Skill development
CO2	Apply the basic concepts and analyze the transient behavior of electrical networks for various excitations.	Skill development
CO3	Design different types of filter configuration and Synthesize them.	Skill development
CO4	Synthesize one port networks.	Skill development

SECTION -A

Introduction: Introduction to Basic signals and introduction to systems, Thevenin's and Nortons's theorem, Superposition theorem, Reciprocity theorem, Millman's theorem, Compensation theorem Maximum power transfer theorem for ac circuits. Two-Port Network: Introduction and characterization of two port networks, Open circuit impedance parameters, Short circuit admittance parameters Transmission parameters, Inverse transmission parameters, Hybrid parameters, Inverse hybrid parameters, Interrelation between parameters, Condition of symmetry and reciprocity for a two-port network, Interconnection of two port network.

SECTION-B

Transient Analysis: Introduction to transient analysis, Initial conditions in elements source free and forced response of RL, RC and RLC series and RLC parallel circuit for a DC source, Time constant, Introduction to Laplace transform and inverse Laplace, application of Laplace transform for solution of RL, RC & RLC Circuits. Graph Theory: Elements of graph theory: graph, tree and co-tree, links and twigs, Incidence Matrix, Tie set matrix and KVL for tie set Cut set matrix and KCL for cut set, Duality.

SECTION -C

Filters: Classification of filters, Analysis and design of Low pass filter using constant K and m-derived method -Analysis and design of High pass, band pass and band reject filters using constant K and m-derived method.

SECTION-D

Network Functions: Driving point functions and transfer functions, properties and necessary conditions of Driving point functions and transfer functions, Poles and Zeros of Network function, Causality and Stability Hurwitz polynomial and properties of Hurwitz polynomial, Positive real function Properties of Positive real function. Network Synthesis: Synthesis of one port networks: Cauer and Foster Methods LC networks Synthesis of one port networks: Cauer and Foster Methods, RL, RC networks.

Text Books:

- 1. A Sudhakar and Shyammohan S Palli, "Circuits and Networks- Analysis and Synthesis", McGraw Hill Education.
- 2. D Roy Choudary, "Network and Systems" New Age International.

Reference Book:

- 1. M. E. Van Valkenberg, "Network Analysis" 2nd Edition, Prentice Hall of India
- 2. S P Ghosh, A K Chakraborty, "Network Analysis and Synthesis

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	3	3	-	-	-	-	-	-	3	3	-	3	3	-
ЕСН202В- Т	NETWORK THEORY	CO2	3	3	3	3	-	-	-	-	3	3	-	3	3	-
		CO3	3	3	3	3	-	-	-	-	-	3	-	3	3	-
		CO4	3	3	3	3	-	-	-	-	-	3	-	3	3	-

Course Title/Code	NETWORK THEORY LAB (ECH202B-P)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	To synthesize an electrical network from a given impedance/admittance fur	nction.
Course Outcome	es (COs)	Mapping
CO1	To analyze complex two-terminal linear networks using Thevenin's and Norton's theorem.	Employability, Skill Development
CO2	To Verify critical network parameters such as open-circuit impedance [Z] and short-circuit admittance [Y] for two-port networks under varying conditions.	Employability, Skill Development
CO3	To demonstrate advanced parameter analysis by measuring hybrid parameters [h] and transmission line parameters [ABCD]	Employability, Skill Development

LIST OF EXPERIMENTS:

- 1. To test and demonstrate the validity of nodal analysis and mesh analysis through experimental measurements.
- 2. To reduce the complexity of a two terminal linear network by means of Thevenin's and Norton's theorem.
- 3. To measure and verify Open-circuit impedance [Z] parameter for a two-port network and its application for a series network.
- 4. To measure and verify Short-circuit Admittance [Y] parameter for a two-port network and its application for a parallel network.
- 5. To measure and verify Hybrid parameter [h] and its application for a series parallel network for a two-port network.
- 6. To measure and verify Transmission line parameters [ABCD] for a two-port network and its application for a cascaded network.
- 7. Introduction of circuit creation & simulation software P-Spice and Transient response of RL circuit, Transient response of RC circuit.
- 8. Resonance frequency, Bandwidth of RLC series circuit using P-Spice software
- 9. To design a constant K low pass filter (both Π and T SECTIONs).
- 10. To design a constant K High pass filter (both Π and T SECTIONs)

CO-PO Mapping

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
ECH202B-P	NETWORK THEORY	CO1	3	3	-	-	3	-	-	-	3	3	-	3	-	3
	LAB	CO2	3	3	3	3	3	-	-	-	3	3	-	3	3	3
		CO3	3	3	3	3	3	-	-	-	-	3	3	3	-	3

Course Title/Code	ANALOG ELECTRONICS (ECH203B-T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisities	NA	
Course Objective	To provide the basic knowledge on the working and operation of various integrated circuits their design and applications	transistors and linear
Course Outcome	es (COs)	Mapping
CO1	Demonstrate the understanding of the working of transistor as an amplifier at low and high frequency and do the analysis of single and multistage amplifiers	Skill development
CO2	Comprehend the applications of Field effect transistor amplifier.	Skill development
CO3	Appreciate the working of power amplifier circuits and Oscillators and implement various designs	Skill development
CO4	Visualize the working of operational amplifiers and will be able to demonstrate the same on various applications	Skill development

SECTION A

BJT circuits: Structure and I-V characteristics of a BJT; BJT as a switch. BJT as an amplifier: small-signal model, biasing circuits, current mirror; common-emitter, common-base and common collector amplifiers; Small signal equivalent circuits, high-frequency equivalent circuits, ebers moll model. MOSFET structure and I-V characteristics

SECTION B

MOSFET circuits: .MOSFET as a switch. MOSFET as an amplifier: small-signal model and biasing circuits, common-source, common-gate and common-drain amplifiers; small signal equivalent circuits - gain, input and output impedances, transconductance, high frequency equivalent circuit, Differential amplifier.

SECTION C

Power amplifier: Class A, Class B. Class AB, Class C, Transformer coupled amplifier, Oscillators: barkhausen criteria, Hartley Oscillators, Colpitts Oscillators, Phase-Shift Oscillators, Wein-Bridge Oscillators

SECTION D

OpAmp: Block diagram of OpAmp internal structure of an operational amplifier, ideal op-amp, non-idealities in an op-amp (Output offset voltage, input bias current, input offset current, slew rate, gain bandwidth product) Linear applications of op-amp: Idealized analysis of op-amp circuits. Inverting and non-inverting amplifier, instrumentation amplifier, integrator/differentiator, , active filter, Log & anti log amplifier. Nonlinear applications of op-amp: Comparator, Zero Crossing Detector, Square-wave and triangular-wave generators. Precision rectifier, peak detector, Monoshot.

Text/References:

1. A. S. Sedra and K. C. Smith, "Microelectronic Circuits", New York, Oxford University Press, 1998.

2. J. V. Wait, L. P. Huelsman and G. A. Korn, "Introduction to Operational Amplifier theory and applications", McGraw Hill U. S., 1992.

3. J. Millman and A. Grabel, "Microelectronics", McGraw Hill Education, 1988.

4. P. Horowitz and W. Hill, "The Art of Electronics", Cambridge University Press, 1989.

5. P. R. Gray, R. G. Meyer and S. Lewis, "Analysis and Design of Analog Integrated Circuits", John Wiley & Sons, 2001.

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	3	3	3	-	-	-	-	-	-	-	-	3	-	3
ЕСН203В- Т	ANALOG ELECTRONICS	CO2	3	3	3	-	-	-	-	-	-	-	-	3	-	3
		CO3	3	3	3	-	-	-	-	-	-	-	-	3	-	3
		CO4	3	3	3	-	-	-	-	-	-	-	-		-	3

Course Title/Code	ANALOG ELECTRONICS LAB (ECH203B-P)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisiti es	NA	
Course Objective	To provide the basic knowledge on the working and operation of various trans circuits, their design and applications	sistors and linear integrated
Course Outco	mes (COs)	Mapping
CO1	To design RC-coupled amplifiers, explore the effects of cascading on gain and bandwidth, and investigate different feedback mechanisms on amplifier performance.	Employability, Skill Development
CO2	To demonstrate the operation of differentiator and integrator circuits, demonstrating their functionality as high-pass and low-pass filters, respectively.	Employability, Skill Development
CO3	Analyze and plot the frequency response of the AC-coupled amplifier and analyze the effects of negative feedback on its bandwidth and gain.	Employability, Skill Development
CO4	Realize the operation of operational amplifiers and design projects.	Entrepreneurship

LIST OF EXPERIMENTS:

Design & measure the frequency response of an RC coupled amplifier using discrete components.

Design a two stage RC coupled amplifier and determine the effect of cascading on gain and bandwidth

Study the effect of voltage series, current series, voltage shunt, and current shunt feed-back on amplifier using discrete components.

Design & realize inverting amplifier, non-inverting and buffer amplifier using 741 Op Amp.

Verify the operation of a differentiator circuit using 741 op amp and show that it acts as a high pass filter.

Verify the operation of a integrator circuit using 741 op amp and show that it acts as a low pass filter.

Design and verify the operations of op amp adder and Subtractor circuits.

Plot frequency response of AC coupled amplifier using op amp 741 and study the effect of negative feedback on the bandwidth and gain of the amplifier.

Design & realize using op amp 741, Wein -bridge oscillator.

To design & realize using op amp 741, square wave generator.

To design & realize using op amp 741, logarithmic amplifier

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	3	3	3	-	-	-	-	-	-		-	3	3	3
ECH203B- P	ANALOG ELECTRONICS LAB	CO2	3	3	3	-	-	-	-	-	-	-	-	3	-	3
		CO3	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3

Course Title/Code	SIGNALS AND SYSTEMS (ECH204B)						
Course Type	Core						
L-T-P Structure	3-1-0						
Credits	4						
Pre-requisitie s	NA						
Course Objective Understand signals and systems in terms of both the time and transform domains, taking advantage of the complementary insights and tools that these different perspectives and develop mathematical skill to solve problems involving convolution, filtering, modulation and sampling.							
Course Outcor	nes (COs)	Mapping					
CO1	Differentiate between signal types and determine various properties of practical systems	Employability					
CO2	Determine the behavior and shape of a signal in frequency domain	Employability					
CO3	Characterize and analyze the response of the LTI system to test signals	Employability, Skill Development					
CO4	Classify continuous and discrete time signals and illustrate the convergence of discrete time signals	Employability					

CO5	Transform signals (both in continuous and discrete time) into more	Employability, Skill
	recognizable form of frequency domain for analysis of	Development
	communication.	
	communication.	

SECTION A

Introduction of Signals: Signals: Definition, Introduction to elementary signals: unit impulse, unit step, unit ramp, exponential, rectangular pulse, sinusoidal, Transformation of independent variable of signals, Classification of signals and their representations: continuous-time/discrete-time, periodic/non-periodic, even/odd, energy/power, deterministic/random, one-dimensional/multi-dimensional, Difference between analog and digital signals and their advantages, Introduction of System: classification of systems, system properties: linearity, time/shift-invariance, causality, stability.

SECTION B

Fourier Series (FS): Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transforms (FT): CTFT - Definition, conditions of existence of Fourier Transform, Properties of CTFT, Magnitude and phase spectra, Some important FT theorems, Parseval's theorem, Inverse FT, DTFT - Discrete time Fourier transform, Inverse DTFT, Condition of convergence, Properties and theorems of DTFT, Comparison between CTFT and DTFT

SECTION C

Laplace-Transform (LT) and Analysis of LTI system: One-sided LT of elementary signals, Regions of convergence (ROC), Important theorems and properties of LT, Inverse LT, Bilateral LT, Solutions of differential equations using LT, Relation between LT and FT, Analysis and characterization of LTI system using Laplace Transform, Impulse response, step response and frequency response.

SECTION D

Z-transform (ZT) and Analysis of Discrete Time System: One sided and Bilateral Z-transforms, ZT of signals, ROC, Properties and theorems, Inverse Z- transform, S to Z-plane mapping, relation between ZT and DTFT, Analysis and characterization of discrete time system using Z- transform, Impulse response, step response and frequency response. Sampling and Reconstruction: The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects.

Text/References:

1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and systems", Prentice Hall India.

2. Tarun Kumar Rawat, Signals and Systems, Oxford University Press, 1st edition, 2010.

Reference Books:

1. I J Nagrath, R. Ranjan&Sharan, Signal and Systems, TMH, New Delhi.

CO-PO Mapping

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	3	3	-	-	-	-	-	-	-	-	-	-	3	3
SIGNALS ECH204B AND SYSTEM	SIGNALS	CO2	3	3	3	3	-	-	-	-	-	-	-	-	3	3
	AND SYSTEMS	CO3	3	3	3	3	-	-	-	-	-	-	3	3	3	3
		CO4	3	3	3	3	-	-	-	-	-	-	3	3	3	3
		CO5	3	3	-	-	-	-	-	-	-	-	3	3	3	3

Course Title/Code	DIGITAL ELECTRONICS (ECH208B-T)								
Course Type	Core								
L-T-P Structure	3-1-0								
Credits	4								
Pre-requisities	NA								
Course Objective	To understand the logic of various digital circuits which will further help in their des	igning.							
Course Outcomes	(COs)	Mapping							
CO1	Apply the fundamental concepts, techniques and applications of Number Systems and Codes used in digital electronics.	Skill development							
CO2	Design and analyze various Combinational circuits.	Skill development							
CO3	Design and analyze various Sequential circuits	Skill development							
CO4	Appreciate the design of various logic gates at transistor level .	Skill development							

SECTION-A

Fundamentals of Digital Techniques: Binary, Octal and Hexadecimal number system, Binary, Octal and Hexadecimal arithmetic, Radix conversion, Signed binary numbers, Fixed and floating point numbers, BCD, Gray, Excess-3, Self-Complimentary codes, Error detecting and correcting codes- Parity check codes, Hamming code, Basic logic operation and logic gates, Truth table, Fundamental theorems of Boolean Algebra, Standard representation of logic functions-SOP and POS forms, Simplification using K-map and Quine Mc-Clusky methods.

SECTION-B

Combinational Design using MSI Devices: Design of combinational circuits - Half, full and parallel adder, Half and full subtractor, BCD adder, BCD Adder as a Subtractor, Multiplexer, Demultiplexer, Decoder/display driver, Encoder, Priority encoder, Magnitude comparator, Code converter, Binary Multiplier, Design examples.

SECTION-C

Sequential Logic Circuits: Latches, Flip-flops: R-S, J-K, Master-slave, T, D, Conversion of flip flops, Registers: SISO, SIPO, PISO, PIPO, Bidirectional and Universal registers, Counters: Asynchronous, Synchronous counters, Shift register counters: Ring & Johnson Counter, Designing examples of Counters, Arithmetic logic unit.

SECTION-D

Logic Families – Significance and Types, Characteristic Parameters, Transistor Transistor Logic (TTL), Emitter Coupled Logic (ECL), CMOS Logic Family, BiCMOS Logic, NMOS and PMOS Logic, Integrated Injection Logic (I2L) Family, Comparison of Different Logic Families, Interfacing with Different Logic Families- CMOS-to-TTL Interface and TTL-to-CMOS Interface, TTL-to-ECL and ECL-to-TTL Interfaces, CMOS-to-ECL and ECL-to-CMOS Interfaces

Text Books:

1. Anil K. Maini, Digital Electronics, Principles, Devices and Applications, John Wiley & Sons

2. M. Morris Mano and M. D. Ciletti, Digital Design, 4th Edition, Pearson Education

3. Anand Kumar, Fundamentals of Digital Circuit, PHI Publication

Reference Books:

1. Thomas L. Flyod, Digital Fundamentals, Pearson Education India

2. R.P. Jain, Modern digital electronics, 3rd edition, TMH Publication.

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	3	3	3	-	-	-	-	-	-	-	-	-		3
ECH208B-T	DIGITAL ELECTRONICS	CO2	3	3	-	-	-	-	-	-	-	-	-	3	3	3
		CO3	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	-	3	3	3	3	3

Corse Title/Code	DIGITAL ELECTRONICS LAB (ECH208B-P)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	To understand the logic of various digital circuits which will further help in t	heir designing.
Course Outcom	es (COs)	Mapping
CO1	To comprehend the operation of logic gates and their implementation using different circuit components.	Skill Development
CO2	investigate the optimization of Boolean functions using SOP and POS methods, and design combinational circuits such as adders, subtractors, MUX, and DEMUX.	Employability, Skill Development
CO3	design circuits using JK flip-flops, gaining practical insights into counter design principles and sequential circuit operation	Employability, Skill Development
CO4	Implement digital electronic projects, and enhance their problem-solving abilities and gain valuable experience applicable to careers in digital electronics engineering and related fields	Employability/ Entrepreneurship

Experiment List:

- 1. Verification of truth table of logic gates using TTL ICs, designing gates using diodes & resistors.
- 2. Design of AND, OR, NOT gates using Universal Gates.
- 3. Implementation of SOP & POS Boolean Functions.
- 4. Design a function using K-map and verify its performance using SOP and POS form
- 5. Design of Combinational circuits- Adders & Subtractors
- 6. Design of Combinational circuits- MUX and DEMUX.
- 7. Design a binary to gray code converter and Gray to Binary code converter
- 8. 8. Analysis of basic flip-flops. Verify the truth table of RS, JK, T and D flip-flops using gates.
- 9. Design and verify the 4- Bit Synchronous or Asynchronous Counter using JK Flip Flop
- 10. Design of Arithmetic Logic Unit (ALU)
- 11. Mini Project

CO-PO Mapping

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	3	3	3	-	3	-	-	-	-	3	-	-	-	3
ECH208B-P	DIGITAL ELECTRONICS LAB	CO2	3	3	3	3	3	-	-	-	-	3	-	3	3	3
		CO3	3	3	3	3	3	-	-	-	-	3	-	-	3	3
		CO4	3	3	3	3	3	3	-	-	-	3	3	3	3	3

Course Title/Code	INTRODUCTION TO RESEARCH (RDO505)	
Course Type	Soft Core	
L-T-P Structure	0-1-0	
Credits	1	
Pre-requisitie s	NA	
Course Objective	To apply the contextual knowledge of designing in research and to unders practice that are to be followed in the research activities. The student is al research.	stand and adopt the ethical ole choose specific area of
Course Outcom	es (COs)	Mapping
CO1	The student shall be able to describe research and its impact.	Skill Development
CO2	The student shall be able to identify broad area of research, analyze, the processes and procedures to Carryout research	Skill Development
CO3	The student shall be able to use different tools for literature survey	Skill Development
CO4	The student is able choose specific area of research and supervisor/mentor is finalized	Skill Development

SECTION-A

Unit 1: What is Research and its impact?-1.1 Capturing the current research trends-1.2 Insight about scientific research performed by renowned experts in the related field(case studies)-1.3 Do's and Don'ts pertaining to research

SECTION-B

Unit 2: Identification of Broad Area of research- 2.1 Identification of thrust area of research for deciding broad area 2.2 Framing the research questions and hypothesis- 2.3 Identification of the research gap based on feasibility of problem- 2.4 Exploration of in-house and commercially available facilities related to broad area

SECTION-C

Unit 3: Understanding the tools for Literature Survey- 3.1 Finding research papers related to a topic-3.2 Understanding the different aspects of Literature search- 3.3 Usage of different sources like Google scholar, WoS, SCI/ SCIE, PubMed, Scopus, ABDC, EBSCO etc.- 3.4 Search for online journals relevant to research area- 3.5 Indexing of Journals- 3.5 Usage of scholarly networking sites like Research Gate, Mendeley, and Academia.edu etc- 3.6 Demo sessions on the usage of above mentioned sources

SECTION-D

Unit 4: Review of research papers pertaining to broad area and specific area of research- 4.1 Selection of relevant papers- 4.2 Finding specific research problem from broad area of research- 4.3 Literature survey and justification of specific research problem- 4.4 Experimentation and data cleaning and-verification- 4.5 Understanding and selection of the research domain- 4.6 Seeking information through published work w.r.t the problem- 4.7 Reading & categorizing the downloaded/referred papers and structuring of the idea-Model design about framing the research questions-Unit 5: Report Writing and Presentation skill Development-5.1 Report making on the surveyed literature to cater the basic idea of the research papers-5.2 Compiling and analyzing the published results to justify and understand the proposed ideas-5.3 Usage of MS-PowerPoint and other technical resources for the presentation-5.4 Development of presentation skills and group addressing-5.5 Scientific/technical writing and ethical practice, project report

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
RDO 501	INTRODUCTION TO RESEARCH	CO1	3	3	3	3	-	-	-	-	-	3	3	3	3	3
		CO2	3	3	3	3	-	-	-	-	-	3	3	3	3	3
		CO3	3	3	3	3	-	-	-	-	-	3	3	3	3	3
		CO4	3	3	3	3	-	-	-	-	-	3	3	3	3	3

Course Title/Code	SPANISH-I (FLS101)	
Course Type	Audit Elective	
L-T-P Structure	2-0-0	
Credits	0	
Pre-requisities	NA	
	Exchange greetings and do introductions using formal and informal expres	sions
	Understand and use interrogative and answer simple questions	
Course Objective	Learn Basic vocabulary that can be used to discuss everyday life and daily sentences and familiar vocabulary. Express their likes and dislikes. Also w simple conversations about familiar topics (e.g., greetings, weather and dai repetition when needed Identify key details in a short, highly-contextualize familiar topic, relying on repetition and extra linguistic support when need Describe themselves, other people, familiar places and objects in short disc sentences and basic vocabulary Provide basic information about familiar si interest Express or/and justify opinions using equivalents of different verbes Differentiate certain patterns of behavior in the cultures of the French-spea student's native culture	routines, using simple ill have understanding of ly activities,) with ed audio text dealing with a ed. course using simple tuations and topics of s king world and the
Course Outcome	es (COs)	Mapping
CO1	Students will be able to greet each other.	Employability, Skill Development
CO2	Students will be able to make sentences with the verb ser. They will be able to use verb ser with nationality and professions.	Employability
CO3	Students will be able to learn cardinal and ordinal numbers.	Employability, Skill Development
CO4	Students will be able to recognize masculine and feminine words in Spanish. They will be learning the articles and its usages with nouns.	Employability

SECTION-A

Unit 1: Introduction to Spanish and SER1.1 Presentation on Spanish language-1.2 Greetings and goodbyes-1.3 Spanish letters-1.4 Introduction of verbo SER-Unit 2: Verb Ser, Nationality, Profession and Counting-2.1 Uses of verbo SER-2.2 Adjectives related to verbo SER.-2.3 Introduction of Nationality-2.4 Professions and vocabulary related to professions-2.5 Counting till number 20.

SECTION-B

Unit 3: Articles, Interrogative and Estar-3.1 Introduction of Articles and Indefinite articles-3.2 Interrogatives-3.3 Introduction of Verbo Estar

SECTION-C

Unit 4:Estar, Preposition, Tener and Self Introduction-4.1 Uses of Verbo ESTAR and adjectives related to it-4.2 Introducton of 'my house' vocabulary-4.3 Prepositions related to the positioning of an object-4.4 Self – introduction

SECTION-D

Unit 5 : Day, Month and Regular AR verb-5.1 Days-5.2 Month-5.3 Introduction to regular -AR verbs

Text Books/Reference Books:

¡Ole!-Langers

¡Uno, dos, tress

Weblinks:

http://studyspanish.com/

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
FLS101		CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
	SPANISH-I	CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO4	-	-	-	-	-	-	-	-	3	3	-	3	-	-

Course Title/Code	FRENCH-I (FLS103)											
Course Type	Audit Elective											
L-T-P Structure	2-0-0											
Credits	0											
Pre-requisities	NA											
	Exchange greetings and do introductions using formal and informal expressi	ions										
	Understand and use interrogative and answer simple questions											
	Learn Basic vocabulary that can be used to discuss everyday life and daily resentences and familiar vocabulary	outines, using simple										
	Express their likes and dislikes. Also will have understanding of simple con- topics (e.g., greetings, weather and daily activities,) with repetition when new	versations about familiar eded										
Course	entify key details in a short, highly-contextualized audio text dealing with a familiar topic, relying repetition and extra linguistic support when needed.											
Objective	Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary											
	Provide basic information about familiar situations and topics of interest	ation about familiar situations and topics of interest										
	Express or/and justify opinions using equivalents of different verbs											
	Differentiate certain patterns of behavior in the cultures of the French-speaking world and the student's native culture											
Course Outcom	es (COs)	Mapping										
CO1	Exchange greetings and do introductions using formal and informal expressions. Understand and use interrogative and answer simple questions.	Employability, Skill Development										
CO2	Learn Basic vocabulary that can be used to discuss everyday life and daily routines, using simple sentences and familiar vocabulary.	Employability										
CO3	Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary.	Employability, Skill Development										
CO4	Students will be able to understand audio text and comprehend to the same. They will be able to form paragraph using auxilary verb and basic verbs.	Employability, Skill Development										

SECTION-A

Unit - Saluer et épeler l'alphabet

1.1 Les Salutations & forms of politeness-1.2 Alphabets-Unit 2- Usage de Vous et de Tu -2.1 Taking leave expressions-2.2 Les pronoms sujets-2.3 Basic Questions

SECTION-B

Unit 3- Présentez-vous-3.1 Les verbes ER-3.2 Self introduction-3.3 Décrivez votre ami(e)

SECTION-C

Unit 4- Identifier un nombre, compter-4.1 Les nomS.2 Verbes Avoir, Etre, Aller y Faire-4.3 Les nombres-Unit 5-Demander/ donner les explications-5.1 Les articles define et indéfini-5.2 Les mois de l'année-5.3 Les jours de la semaine

SECTION-D

Unit 6- Parler des saisons et demander l'heure-6.1 Time-6.2 Weather-6.3 Unseen Passage

Text Books/Reference Books/ Suggested Readings:

Alter Ego Level One Textbook, Annie Berthet, Catherine Hugot, Hachette Publications

Apprenons Le Francais II & III, Mahitha Ranjit, 2017, Saraswati Publications

Weblinks:

www.bonjourfrance.com

www.allabout.com

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
FLS103	FRENCH-I	CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO4	-	-	-	-	-	-	-	-	3	3	-	3	-	-

Course Title/Code	GERMAN-I (FLS102)	
Course Type	Audit Elective	
L-T-P Structure	2-0-0	
Credits	0	
Pre-requisities	NA	
Course Objective	Exchange greetings and do introductions using formal and informal expression Understand and use interrogative and answer simple questions Learn Basic voused to discuss everyday life and daily routines, using simple sentences and the Express their likes and dislikes. Also will have understanding of simple convolutions (e.g., greetings, weather and daily activities,) with repetition when need in a short, highly-contextualized audio text dealing with a familiar topic, rely extra linguistic support when needed. Describe themselves, other people, family short discourse using simple sentences and basic vocabulary. Provide basic in situations and topics of interest. Express or/and justify opinions using equiva Differentiate certain patterns of behavior in the cultures of the French-speaki student's native culture	ons rocabulary that can be familiar vocabulary versations about familiar eded Identify key details ring on repetition and niliar places and objects in nformation about familiar lents of different verbs ng world and the
Course Outcom	es (COs)	Mapping
CO1	Students will be able to exchange greetings and introductions using formal and informal expressions. They will be able to ask and answer simple questions.	Employability, Skill Development
CO2	Students will be able to discuss restaurant vocabulary, using simple sentences.	Employability
CO3	Students will be able to discuss likes and dislikes, understand simple conversations (e.g., greetings, and daily activities).	Employability, Skill Development
CO4	Students will be able to differentiate certain patterns of behavior in the cultures of the German- speaking world and the student's native culture.	Employability
CO5	Students will be able to exchange greetings and introductions using formal and informal expressions. They will be able to ask and answer simple questions.	Employability, Skill Development

SECTION-A

Unit-1: Begrüßungen-1.1 Salutations/Greetings-1.2 Introduction-Unit-2: sich vorstellen und Zahlen-2.1-Introduction 2.2 Alphabets-2.3 Numbers 1-20

SECTION-B

Unit-3: Berufe/ Pronomen-3.1 Personal pronouns-3.2 Hobbies and professions

SECTION-C

Unit-4:Café-4.1 Café related vocabulary and dialogues-4.2 Revision personal pronouns-Unit-5: Café dialog-5.1 Café related vocabulary and dialogues-5.2 Common verbs and their conjugations

SECTION-D

Unit-6: Zeit und Monate-6.1 Time-6.2 Days-6.3 Months

Text Books/Reference Books:

Studio D A1, Hermann Funk, 2011, Cornelson Publication

Tangaram Aktuell A1, Kursbuch & Arbeitsbuch, 2011, Hueber

Netzwerk, Stefanie Dengler, Paul Rusch et. Al, 2011, Klett

Weblinks:http://www.nthuleen.com/

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
FLS102	GERMAN-I	CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO4	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO5	-	-	-	-	-	-	-	-	3	3	-	3	-	-

Course Title/Code	PROFESSIONAL COMPETENCY ENHANCEMENT-I(CDO201)								
Course Type	Soft								
L-T-P Structure	1-0-0								
Credits	0.5								
Pre-requisities	NA								
Course Objective	To acquire basic knowledge about aptitude								
Course Outcomes	(COs)	Mapping							
CO1	Students will become better at analytics and problem solving	Employability, Skill Development							
CO2	Students will be able to solve aptitude problems quickly utilizing the short cuts	Employability							
CO3	Students will have enhanced level of reasoning, numerical skills and speed	Employability, Skill Development							
CO4	Students will have the ability to 'quickly think on their feet'	Employability							
CO5	Students will have enhanced concentration & thinking ability.	Employability, Skill Development							

SECTION-A - Reasoning Ability

Unit 1: Mental Ability

1.1 Mental Ability Test-1.2 Direction Sense Test-1.3 Blood Relations Test-1.4 Cubes-1.5 Cuboids-1.6 Dice-1.7 Word Problems-1.8 Puzzles- Unit 2: Verbal & Non Verbal Reasoning-2.1 Letter Series-2.2 Set Theory-2.3 Venn Diagram-2.4 Syllogism-2.5 Missing Value in figure-2.6 Practice Test

SECTION-B

Unit 3: Logical Reasoning & Word Puzzles

3.1 Logical Reasoning I-3.1.1. Row Arrangement-3.1.2. Circular Arrangement-3.2 Logical Reasoning II-3.2.1. Arrangement-3.2.2. Puzzles-3.3 Logical Reasoning III-3.4 Practice Test-Unit 4: Personality Development- 4.1 Concept of personality-Concept of personality-Bringing out the best in one's personality

4.2 Self awareness

Different learning styles-Areas of Self awareness-Developing self-awareness-4.3 Goal Setting- Five principles of goal setting-Setting "SMART" goals-6P's of goal setting- SWOT analysis-Short term& Long term goals

SECTION-C

Unit 5: Resume Writing-What, why and how of Resume-Building different SECTIONs of the Resume through projects and activities during the course-Unit 6 : Presentation Skills-Designing the presentation- Audience and content analysis- Delivering the presentation- Preparation, Practice, Performance

SECTION-D

Unit 7: Professional Communication-Email writing-Diction and Speech Clarity-LSRW & Introduction to verbal ability as an assessment tool for employability-Unit 8: Professional Grooming and Professional Etiquette - etiquette - Professional-grooming-Personal Grooming-Courtesy and communication discipline

Text Books/Reference Books:

- 1. A Modern Approach to Logical Reasoning: R S Aggarwal, S Chand & Company Pvt Ltd
- 2. A Modern Approach to Non Verbal Reasoning: R S Aggarwal, S Chand & Company Pvt Ltd
- 3. Developing Management Skills by David A Whetten, Kim S Cameron
- 4. Personality and Soft Skills Development by Rajeev Kumar

5. English for business, 100 tips foe effective communication,By: Dignen, Bob; McMaster, Ian. Planegg: Spotlight Verlag GmbH. 2016. eBook.

6. Presentation Skills for technical professionals: Achieving Excellence, By: Karten, Naomi; Gottesdiener, Ellen. Series: Soft Skills for IT Professionals. Ely, Cambridgeshire, United Kingdom :IT Governance Publishing. 2010. eBook., Database: eBook Collection (EBSCOhost)

Weblinks:

http://www.indiabix.com/aptitude/questions-and-answers/

http://www.indiabix.com/non-verbal-reasoning/questions-and-answers/

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CDO201	PROFESSIONAL COMPETENCY ENHANCEMENT- I	CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO4	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO5	-	-	-	-	-	-	-	-	3	3	-	3	-	-

Course Title/Code	PROGRAMMING FUNDAMENTALS USING LINUX (ECW111B)						
Course Type	CORE WORKSHOP (Departmental)						
L-T-P Structure	0-0-2						
Credits	1						
Pre-requisities	NA						
Course Objective	burse To enable the student to articulate given program scenario and apply different programming constructs.						
Course Outcomes	s (COs)	Mapping					
CO1	To analyze the semantics of the given problem statement and illustrate the programming techniques to solve them	Employability, Skill Development					
CO2	To integrate the learned and applied concepts into given LINUX projects to produce real life solutions	Employability					

LAB EXPERIMENT:

General Purpose Commands: date, who, who am I, uname, cal, tty, stty, echo, printf, bc, script, passwd, finger.File Handling utilities: directory related commands : pwd,mkdir,cd,rmdir,ls -le related commands: cat, cp, mv, rm, chmod, chown, chgrp, file, find, ln, ulink, ulimit,umask,touch -Process Related Commands: ps, kill, nohup, at, batch, crontab, fg, bg, jobs -Filters: cat, head, tail, cut, paste, cmp, comm, diff, sort, more, less, pg, tr, uniq etc....Network Related commands: telnet, ftp, rlogin, arp -Disk and backup utilities- disk utilities -df, du- backup utilities: cpio ,tar-Advanced filters (grep,sed,awk)

Write a grep command that selects the lines from the file1 that have exactly three characters

Write a grep command that selects the lines from the file1 that have at least three characters.

Write a grep command that selects the lines from the file1 that have three or fewer characters

Write a grep command that count the number blank lines in the file1

Write a grep command that count the number nonblank lines in the file1

Write a grep command that selects the lines from the file1 that have the string UNIX.

Write a grep command that selects the lines from the file1 that have only the string UNIX.

Write a grep command that copy the file to the monitor, but delete the blank lines.

Write a grep command that selects the lines from the file1 that have at least two digits without any other characters in between

Write a grep command that selects the lines from the file 1 that do not start with A to G.

Write a sed command that print lines numbers of lines beginning with "O"

Write a sed command that delete digits in the given input file.

Write a sed command that delete lines that contain both BEGIN and END

Write a sed command that delete lines that contain BEGIN but not END

Write a sed command that deletes the first character in each line in a file

Write a sed command that deletes the last character in each line in a file

Write an awk command to print the lines and line number in the given input file

Write an awk command to print first field and second field only if third field value is ≥ 50 in the given input file. (input field separator is ":" and output field separator is ",")

Consider the marks.txt is a file that contains one record per line(comma separate fields) of the student data in the form of student id, student name, Telugu marks, English marks, Maths Marks, Science marks, Social Marks. Write an awk script to generate result for every students in the form of studentid, student name, Total Marks and result. Result is PASS if marks is >=30 in TELUGU and English, and if marks>=40 in other subjects.

Write an awk program to print the fields 1 and 4 of a file that is passed as command line argument. The file contains lines of information that is separated by "," as delimeter. The awk program must print at the end the average of all 4th field data.

Write an awk program to demonstrate user defined functions and system command.

Write an awk script to count the number of lines in a file that do not contain vowels.

Write an awk script to find the number of characters, words and lines in a file.

Text Books:

Unix and Shell Programming - B. M. Harwani, OXFORD University Press.

Reference Books:

Linux Administration: A Beginner's Guide - Wale Soyinka , McGraw Hill Publication

Unix Concepts and Applications - Sumitabha Das, McGraw Hill Publication

Course Code	Course	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
ECW 111B	PROGRAMMI NG FUNDAMENT	CO1	3	3	3	3	3	-	-	-	-	3	3	3	3	3
	ALS USING LINUX	CO2	3	3	3	3	3	-	-	-	-	3	3	3	3	3

				COURSE TYPE					
				(CORE/EL					
				ECTIVE /					
		PRE-	G	UNIVERSI				NO. OF	
SUBIFCT	SUBIFCT	REQUISI	DEPARTME					CONTACT HOURS PER	NO C
CODES	NAME	TE	NT	SORY)	L	т	Р	WEEK	CREDI
	ELECTROMAGNETIC	NA							
ECH206B	FIELD AND WAVES		ECE	CORE	3	1	0	4	4
	ANALOG AND	NA							
	DIGITAL								
ECH207B-T	COMMUNICATION		ECE	CORE	3	1	0	4	4
	ANALOG AND	NA							
	DIGITAL								
			ECE	COPE		0	2	2	1
						0		2	<u> </u>
	& INTERFACING								
ECH215B-T		NA	ECE	CORE	3	1	0	4	4
	MICROPROCESSORS								
ECH215B-P	& INTERFACING LAB	NA	ECE	CORE	0	0	2	2	1
	VLSI DESIGN								
ECH209B		NA	ECE	CORE	3	0	0	3	3
			ELECTRONI						
			CS &						
	ELECTRONIC		COMMUNI			_			
ECW221B	DESIGN WORKSHOP	NA	CATION	CORE	0	0	2	2	1
CD0232		ΝΔ		CORE		0		1	1
	PROGRAMMING								
	FOR PROBLEM								
	SOLVING USING		COMPUTER						
CSW208B	PYTHON	NA	SCIENCE	CORE	0	0	2	2	1
			ELECTRONI						
			CS &						
PDOFOG				CODE	0	1		1	1
				COKE					
FLS105									
FLS106			FOREIGN						
FLS107	FRENCH-II	NA	LANGUAGE	ELECTIVE	1	0	0	1	0
				TOTAL	17	4	8	26	21

ECH214B- T	DIGTAL HARDWARE MODELLING USING VHDL	NA	ECE	CORE	3	1	0	4	4
ECH214B- P	DIGTAL HARDWARE MODELLING USING VHDL LAB	DIGITAL ELCETR ONICS	ECE	CORE	0	0	2	2	1

Course Title/Code	ELECTROMAGNETIC FIELD AND WAVES (ECH206B)								
Course Type	Core								
L-T-P Structure	3-1-0								
Credits	4								
Pre-requisities	NA								
Course Objective To introduce the concepts and mathematical methods to understand and analyze the Electromagnetic field and waves									
Course Outcomes (COs)	Mapping							
CO1	Analyze the transmission lines and their parameters using the Smith Chart	Employability							
CO2	Describe the depth of static and time-varying electromagnetic field as governed by Maxwell's equations.	Employability							
СОЗ	Formulate and analyze problems involving lossy media with planar boundaries using uniform plane waves.	Skill development							
CO4	Apply concepts of this subject in Antenna Engineering and its applications.	Skill development							

SECTION-A

Transmission Lines- Equations of Voltage and Current on Transmission line, Propagation constant and characteristic impedance, and reflection coefficient and VSWR, Impedance Transformation on Loss-less and Low loss Transmission line, Power transfer on Transmission line, Smith Chart, Admittance Smith Chart, Applications of transmission lines: Impedance Matching, use transmission line SECTIONs as circuit elements.

SECTION-B

Maxwell's Equations- Basics of Vectors, Vector calculus, Basic quantities of Electromagnetics, Basic laws of Electromagnetics: Gauss's law, Ampere's Circuital law, Faraday's law of Electromagnetic induction. Maxwell's Equations, Surface charge and surface current, Boundary conditions at Media Interface. Uniform Plane Wave-Homogeneous unbound medium, Wave equation for time harmonic fields, Uniform plane wave, Wave polarization, Wave propagation in conducting medium, Phase velocity and group velocity of a wave, Power flow and Poynting vector.

SECTION-C

Plane Waves at a Media Interface- Plane wave in arbitrary direction, Plane wave at dielectric interface, Reflection and refraction at dielectric interface, Total internal reflection, wave polarization at media interface, Reflection from a conducting boundary.

SECTION-D

Wave propagation in parallel plane waveguide, Analysis of waveguide general approach, Rectangular waveguide, Modal propagation in rectangular waveguide, Surface currents on the waveguide walls, Field visualization, Attenuation in waveguide. Radiation: Solution for potential function, Radiation from the Hertz dipole, Power radiated by hertz dipole, Radiation Parameters of antenna, receiving antenna, Monopole and Dipole antenna.

Text/Reference Books:
- 1. R.K. Shevgaonkar, Electromagnetic Waves, Tata McGraw Hill India, 2005
- 2. E.C. Jordan & K.G. Balmain, Electromagnetic waves & Radiating Systems, Prentice Hall, India
- 3. NarayanaRao, N: Engineering Electromagnetics, 3rd ed., Prentice Hall, 1997.
- 4. David Chen g, Electromagnetics, Prentice Hall

Course Code	Course	Course Outcom es	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
		CO1	3	3	-	-	-	-	-	-	3	-	-	3	-	3
ECHOOGD	ELECTROMAGNETIC	CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
ECH200B	FIELD AND WAVES	CO3	3	3	3	3	-	-	-	-	3	-	-	3	-	3
		CO4	3	3	3	3	-	-	-	-	3	-	-	3	3	3

Course Title/Code	ANALOG & DIGITAL COMMUNICATION (ECH207B-T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisities	NA	
Course Objective	Students will be able to analyze and design various analog and digital commu applying the concepts of modulation, noise analysis and multiplexing techniq	unication systems by ues.
Course Outcome	es (COs)	Mapping
CO1	Apply the knowledge of signals and transformation to study different modulation techniques.	Employability
CO2	Identify and implement the modulation techniques required for analog and digital communication.	Employability
CO3	Implement analog to digital conversion and examine the techniques for reducing the error produced in this process.	Employability
CO4	Analyze the effect of distortion and noise on a communication system.	Entrepreneurship

SECTION-A

COMMUNICATION SYSTEM: The essentials of a communication system, types: Analog and digital, modes of Communication, Various frequency bands used for communication, need of modulation, NOISE: External noise, internal noise, S/N ratio, noise figure. AMPLITUDE MODULATION: Generation of AM waves (Square law modulation, collector modulation), Demodulation of AM waves (Square-law detector, envelope detector) DSBSC, Generation of DSBSC waves, Coherent detection of DSBSC waves. SSB modulation, generation of SSB waves, demodulation (VSB)

SECTION B

ANGLE MODULATION: Basic definitions: Phase modulation (PM) & frequency modulation (FM), narrow band frequency modulation, wideband frequency modulation, generation of FM waves, Demodulation of FM waves, generation of PM waves, Comparison between FM and PM Signals, Pre-emphasis & De-emphasis circuits. RECEIVER: Tuned radio frequency (TRF) receiver, superheterodyne receiver, RF SECTION and characteristics, mixers, frequency changing and tracking, IF rejection and IF amplifiers. Detection and automatic gain control (AGC), receiver characteristics.

SECTION C

PULSE ANALOG MODULATION: TDM, FDM, Sampling theory, Aliasing, Modulation and Demodulation: PAM, PWM, PPM. PULSE DIGITAL MODULATION: Elements of pulse code modulation, quantization noise, µLaw and A- law compandor, channel capacity of PCM, Delta modulator (DM), Differential pulse code modulation (DPCM), Adaptive delta modulation (ADM).

SECTION D

DIGITAL MODULATION TECHNIQUE: Amplitude shift keying(ASK), frequency shift keying (FSK), phase shift keying –BPSK, M-ary PSK, Quadrature Amplitude modulation (QAM), MSK, GMSK, Matched filter, carrier recovery squaring loop.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	-	-	-	-	-	-	-	3	-	3
FCH207	ANALOG &	CO2	3	3	3	-	-	-	-	-	-	-	-	3	3	3
B-T	COMMUNICATION	CO3	3	3	3	-	-	-	-	-	-	-	3	3	-	3
		CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3

Course Title/Code	ANALOG & DIGITAL COMMUNICATION LAB (ECH207B-P)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	Students will be able to analyze and design various analog and digital communica applying the concepts of modulation, noise analysis and multiplexing techniques.	ation systems by
Course Outcome	es (COs)	Mapping
CO1	Demonstration of generation and detection of analog modulation techniques using MATLAB	Skill Development
CO2	Compare the different analog modulation techniques.	Skill Development
CO3	Analyze digital modulation techniques by using MATLAB tools.	Skill Development
CO4	Analyze different techniques in modern digital communications, in particular in source coding using MATLAB tools.	Skill Development

List of Experiments:

Introduction to communication toolbox and observe the waveforms of various signals in Simulink

(a) Develop an Amplitude modulator (DSB –FC) and demodulator using MATLAB. Plot the graph for modulated and demodulated output.

(b) Generation of Amplitude modulated (DSB –FC) signal and its demodulation using a trainer kit. Hence calculation of modulation index.

Generation of Double sideband-suppressed carrier (DSB-SC) signal using MATLAB and plot the graph for modulated and demodulated output.

Generation of Single sideband-suppressed carrier (SSB-SC) signal using MATLAB and plot the graph for modulated and demodulated output.

(a) Develop a Frequency modulator and demodulator using MATLAB. Plot the graph for modulated and demodulated output.

(b) Generation of Frequency Modulated signal and calculate Modulation Index of Frequency Modulated Waveform.

To generate the PAM/PWM/PPM signals on the trainer kit and observe the waveforms on CRO.

To generate pulse code modulation signals on the trainer kit observe the waveform on CRO.

To generate ASK, FSK and PSK signals using a trainer kit and observe the waveform on CRO.

Course Code	Course	Course Outcomes	P O1	P O2	Р О3	P O4	P O5	P O6	P O7	Р 08	Р О9	PO1 0	PO1 1	PO1 2	PS O1	PSO 2
		CO1	3	3	-	-	-	-	-	-	-	-	-	3	-	3
ECH207	ANALOG & DIGITAL	CO2	3	3	3	3	-	-	-	-	-	-	-	3	3	3
B-P	COMMUNICATI ON LAB	CO3	3	3	3	3	-	-	-	-	-	-	3	3	-	3
		CO4	3	3	3	3	-	-	-	-	-	-	-	3	3	3

Course Title/Code	MICROPROCESSOR AND INTERFACING (ECH220B-T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisities	NA	
Course Objective	To understand basic of processor and microprocessor and interfacing with n	real world
Course Outcome	es (COs)	Mapping
CO1	To develop assembly language program for microprocessors and microcontrollers.	Employability
CO2	To comprehend the architectural and pipelining concepts for Microprocessors.	Employability
СОЗ	To interface peripherals, sensors and actuators and in embedded systems.	Employability
CO4	To design microprocessor-based system.	Entrepreneurship

SECTION -A

An over view of 8085-An over view of 8085, Architecture of 8086 Microprocessor. Special functions of General-purpose registers. 8086 flag register and function of 8086 Flags. Addressing modes of 8086. Instruction set of 8086. in diagram of 8086-Minimum mode and maximum mode of operation. Timing diagram Assembler directives, simple programs, procedures, and macros.

SECTION --B

Assembly language programs-Assembly language programs involving logical, Branch & Call instructions, sorting, evaluation of arithmetic expressions, string manipulation.

SECTION-C

Memory interfacing to 8086 (Static RAM & EPROM). Need for DMA. DMA data transfer Method. Interfacing with 8237/8257. 8255 PPI – various modes of operation and interfacing to 8086. Interfacing Keyboard, Displays, 8279 Stepper Motor and actuators. D/A and A/D converter interfacing

SECTION-D

Interrupt structure of 8086: Interrupt structure of 8086. Vector interrupt table. Interrupt service routines. Introduction to DOS and BIOS interrupts. 8259 PIC Architecture and interfacing cascading of interrupt controller and its importance

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	-	-	-	-	3	3	-	3	-	3
	MICROPROCESSOR	CO2	3	3	3	3	-	-	-	-	3	3	-	3	3	3
ECH220B-1	AND INTERFACING	CO3	3	3	3	3	-	-	-	-	-	3	3	3	-	3
		CO4	3	3	3	3	-	-	-	-	-	3	-	3	3	3

Course Title/Code	MICROPROCESSOR AND INTERFACING LAB (ECH220B-P)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	To understand basic of processor and microprocessor and interfacing v	vith real world
Course Outcome	es (COs)	Mapping
CO1	Design and implement programs on 8085 microprocessors.	Employability
CO2	Design interfacing circuits with 8085 microprocessors.	Employability
CO3	Design and implement programs on 8086 microprocessors.	Employability
CO4	Design and implement programs on 8086 microprocessors.	Entrepreneurship

LIST OF EXPERIMENTS

• Write and execute an Assembly language Program (ALP) to 8086 processors to sort the given array of numbers.

• Write and execute an Assembly language Program (ALP) to 8086 processors to reverse the given string

• Write and execute an Assembly language Program (ALP) to 8086 processor to verify the password.

• Write and execute an Assembly language Program (ALP) to 8086 processor to insert or delete a character

• Write and execute an Assembly language Program (ALP) to 8086 processor to call a delay subroutine and display the character on the LED display.

• Interface a keypad to 8086 microprocessors and display the key number pressed on the 7- segment display which is also interfaced to 8086.

• Write an interrupt service routine to 8086 whenever there is an interrupt request on interrupt pin, which displays "hello" on a LCD.

• Interface an 8086 microprocessor trainer kit to PC and establish a communication between them through RS 232.

• Interface DMA controller to 8086 and transfer bulk data from memory to I/O device.

• Interface a stepper motor to 8086 and operate it in clockwise and anticlockwise by choosing variable step-size.

• Interface an 8 bit ADC to 8086 and generate digital output and store it in memory for the given square/ ramp/ triangle waveform inputs.

• Interface an ADC to 8086 and generate step, ramp, triangle and square waveforms with different periods.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	-	-	3	3	3	3	-	3	-	3
ECHODOD D	MICROPROCESSOR	CO2	3	3	3	3	-	-	-	3	3	3	-	3	3	3
ECH220B-P	LAB	CO3	3	3	3	3	-	-	-	3	-	3	3	3	-	3
		CO4	3	3	3	3	-	-	3	-	-	3	-	3	3	3

Course Title/Code	VLSI DESIGN (ECH209B)	
Course Type	Core	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	ANALOG ELECTRONICS	
Course Objective	To understand the foundation of fabrication and designing of integrated circuits	
Course Outcome	s (COs)	Mapping
CO1	Demonstrate different steps involved in the fabrication of ICs using MOS transistor, CMOS/BiCMOS transistors and passive components.	Employability
CO2	Analyze and formulate the circuit characterization and performance estimation for an integrated circuit.	Employability
CO3	Formulate and analyze the performance of various inverter structures through pull-up to pull-down ratios.	Employability
CO4		T 1 1 11

SECTION A

REVIEW OF MOS TECHNOLOGY: Introduction to IC technology, MOS Transistor enhancement mode and depletion mode operations, fabrication of NMOS, CMOS and Bi-CMOS devices. Equivalent circuit for MOSFET and CMOS.

SECTION B

MOS TRANSISTOR THEORY: MOS device design equations, MOS transistor, Evaluation aspects of MOS transistor, threshold voltage, MOS transistor transconductance & output conductance, figure of merit, determination of pull-up to pull-down ratio for an n-MOS inverter driven by another n-MOS inverter & by one or more pass transistor, alternative forms of pull-up, CMOS and Bi-CMOS-inverters. Latch up in CMOS circuitry and Bi-CMOS Latch up susceptibility .MOS CIRCUITS AND LOGIC DESIGN- Basic physical design of simple logic gates using n-MOS, p-MOS and CMOS, CMOS logic gate design- Considerations, CMOS logic structures, clocking strategies.

SECTION C

CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION: Resistance estimation, capacitance estimation, inductance, switching characteristics, CMOS gate transistor sizing, power dissipation. VLSI FABRICATION: Crystal growth, wafer preparation, epitaxy, oxidation, lithography, etching, diffusion, dielectric and poly-silicon film deposition, ion implantation, yield and reliability, centralization.

SECTION D

DESIGN EXAMPLE USING CMOS: Incrementer / decrementer, left/right shift serial/parallel register, comparator for two n-bit number, a two-phase non-overlapping clock generator with buffered output on both phases, design of an event driven element for EDL system

TEXT BOOKS:

- 1. Introduction to Digital Integrated Circuits: Rabaey, Chandrakasan & Nikolic.
- 2. Principles of CMOS VLSI Design: Neil H.E. Weste and Kamran Eshraghian; Pearson.

REFERENCE BOOKS:

- 1. Introduction to Digital Circuits: Rabaey and LPE (PH).
- 2. VLSI Technology: S.M. Sze; McGraw-Hill.
- 3. Integrated Circuits: K.R. Botkar; Khanna

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
	VLSI DESIGN	CO1	3	3	-	-	-	-	3	3	3	3	-	3	-	3
		CO2	3	3	3	3	-	-	-	3	3	3	-	3	3	3
ECH209B-1		CO3	3	3	3	3	-	-	-	3	-	3	3	3	-	3
		CO4	3	3	3	3	-	-	3	-	-	3	-	3	3	3

Course Title/Code	SPANISH-II (FLS105)	
Course Type	Elective	
L-T-P Structure	1-1-0	
Credits	0	
Pre-requisiti es	NA	
Course Objective	Exchange greetings and do introductions using formal and informal expressions Understand and use interrogative and answer simple questions Learn Basic vocabulary that can be used to discuss everyday life and daily re- sentences and familiar vocabulary Express their likes and dislikes. Also will have understanding of simple converse topics (e.g., greetings, weather and daily activities,) with repetition when needed Identify key details in a short, highly-contextualized audio text dealing with a fam- repetition and extra linguistic support when needed. Describe colors, clothing, profession, family and marital status in short discourse u and basic vocabulary Provide basic information about familiar situations and topics of interest Express or/and justify opinions using equivalents of different verbs Differentiate certain patterns of behavior in the cultures of the Spanish-speaking w native culture	outines, using simple sations about familiar niliar topic, relying on sing simple sentences rorld and the student's
Course Outco	mes (COs)	Mapping
CO1	Exchange greetings and do introductions using formal and informal expressions. Understand and use interrogative and answer simple questions.	Employability, Skill Development
CO2	Learn Basic vocabulary that can be used to discuss everyday life and daily routines, using simple sentences and familiar vocabulary. Express their likes and dislikes. Also will have understanding of simple conversations about familiar topics (e.g., greetings, weather and daily activities,) with repetition when needed.	Employability, Skill Development
CO3	Identify key details in a short, highly-contextualized audio text dealing with a familiar topic, relying on repetition and extra linguistic support when needed. Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary.	Employability, Skill Development
CO4	Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary. Provide basic information about familiar situations and topics of interest.	Employability, Skill Development
CO5	Express or/and justify opinions using equivalents of different verbs. Differentiate certain patterns of behavior in the cultures of the Spanish-speaking world and the student's native culture.	Employability, Skill Development
CO6	Describe various places, location, themselves using simple sentences and vocabulary.	Employability, Skill Development

SECTION-A

Unit 1- Mi famila

1.1 Describe your family-1.2 Adjectives to describe a person-1.3 Short essay on family & friend-Unit 2- Gustar-2.1 Likes and dislikes-2.2 Conjugation-2.3 Comprehension

SECTION-B

Unit 3- Verbos Irregulares y reflexivos-3.1 Conjugation-3.2 Routina diaria-3.3 Sentence formation

SECTION-C

Unit 4- El horario

4.1 Timings-4.2 Colours-Unit 5- Estar+gerundio-5.1 Conjugation-5.2 Prepositions-5.3Picture description

SECTION-D

Unit 6- Ser y estar-6.1 Direction-6.2 Comprehension

Text Books/Reference Books:

- 1. ¡Ole!-Langers
- 2. ¡Uno, dos, tres

Weblinks:

http://studyspanish.com/

Cours e Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
FI 6105	SPANISH-I	CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
FLSIUS	Ι	CO4	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO5	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO6	-	-	-	-	-	-	-	-	3	3	-	3	-	-

Course Title/Code	GERMAN-II (FLS106)	
Course Type	Elective	
L-T-P Structure	1-1-0	
Credits	0	
Pre-requisities	NA	
Course Objective	Exchange greetings and do introductions using formal and informal exp Understand and use interrogative and answer simple questions Learn Basic vocabulary that can be used to discuss everyday life and da sentences and familiar vocabulary Express their likes and dislikes. Also will have understanding of simple topics (e.g., greetings, weather and daily activities,) with repetition whe Identify key details in a short, highly-contextualized audio text dealing on repetition and extra linguistic support when needed. Describe themselves, other people, familiar places and objects in short of sentences and basic vocabulary Provide basic information about familiar situations and topics of interess Express or/and justify opinions using equivalents of different verbs Differentiate certain patterns of behavior in the cultures of the German- student's native culture.	ressions ily routines, using simple conversations about familiar n needed with a familiar topic, relying liscourse using simple t speaking world and the
Course Outcom	es (COs)	Mapping
CO1	Students will be able to write short essays on family and friends.	Employability, Skill Development
CO2	They will have knowledge of tenses.	Employability, Skill Development
CO3	Students will be able to identify classroom vocabulary in the German language	Employability, Skill Development
CO4	Students will be able to speak ordinal and cardinal numbers and they will also learn months, days in German	Employability, Skill Development
CO5	They will be able to express or/and justify opinions using equivalents of different verbs	Employability, Skill Development
CO6	They will be able to express or/and justify opinions using equivalents of different verbs.	Employability, Skill Development

SECTION-A

Unit 1- Mi famila

1.1 Describe your family-1.2 Adjectives to describe a person-1.3 Short essay on family & friend-Unit 2- Gustar-2.1 Likes and dislikes-2.2 Conjugation-2.3 Comprehension

SECTION-B

Unit 3- Verbos Irregulares y reflexivos -3.1 Conjugation-3.2 Routina diaria-3.3 Sentence formation

SECTION-C

Unit 4- El horario-4.1 Timings-4.2 Colours-Unit 5- Estar+gerundio-5.1 Conjugation-5.2 Prepositions-5.3Picture description-

SECTION-D

Unit 6- Ser y estar-6.1 Direction-6.2 Comprehension

Text Books/Reference Books:

- 1. ¡Ole!-Langers
- 2. ¡Uno, dos, tres.....
- 3. Weblinks:http://studyspanish.com/

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
FI 0107	GERMAN-I	CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
FLS106	Ι	CO4	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO5	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO6	-	-	-	-	-	-	-	-	3	3	-	3	-	-

Course Title/Code	FRENCH-II (FLS107)									
Course Type	Elective									
L-T-P Structure	1-1-0									
Credits	0									
Prerequisite s	NA									
Course Objective	Recognize numbers and tell their age using numbers. Tell and ask time in 12 hour and 24 hour format Learn Basic vocabulary that can be used to discuss the weather and seasons Identify colors, professions and adjectives in French and describe different people and objects using these three. Describe orally and in writing themselves, their family and their friends. Use reflexive verbs to describe daily routine. Identify key details in a short, highly-contextualized audio text dealing with a familiar topic, relying on repetition and extra linguistic support when needed. Provide basic information about familiar situations and topics of interest Express or/and justify opinions using equivalents of different verbs Differentiate certain patterns of behavior in the cultures of the French-speaking world and the student's native culture									
Course Outco	mes (COs)	Mapping								
CO1	.Exchange greetings and do introductions using formal and informal expressions. Understand and use interrogative and answer simple questions.	Employability, Skill Development								
CO2	Learn Basic vocabulary that can be used to discuss everyday life and daily routines, using simple sentences and familiar vocabulary. Express their likes and dislikes. Also will have understanding of simple conversations about familiar topics (e.g., greetings, weather and daily activities,) with repetition when needed.	Employability, Skill Development								
CO3	Identify key details in a short, highly-contextualized audio text dealing with a familiar topic, relying on repetition and extra linguistic support when needed. Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary.	Employability, Skill Development								
CO4	Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary. Provide basic information about familiar situations and topics of interest.	Employability, Skill Development								
CO5	Express Gorand justify opinions using equivalents of different verbs. Differentiate certain patterns of behavior in the cultures of the French-speaking world and the student's native culture.	Employability, Skill Development								
CO6	Describe various places, locations, themselves using simple sentences and vocabulary.	Employability, Skill Development								

SECTION-A

Unit 1- Se présenter (1)-1.1 Les pluriels-1.2 Adjectives to describe a person-Unit 2- Se présenter (2)-2.1 Professions

2.2 Short essay on family & friend -2.3 Comprehension

SECTION-B

Unit 3- Parler de ses habitudes quotidiennes-3.1 Les verbes pronominaux-3.2 Décrivez votre journée-

SECTION-C

Unit 4- Nommez et localiser des lieux dans la ville-4.1 Prepositions-4.2 Asking & telling the way-Unit 5- Informations -simples sur le climat, la météo-5.1 Les saisons-5.2 Les expressions de la saison-5.3 Compréhension

SECTION-D

Unit 6- Demander/ indiquer les horaires et les couleurs

6.1 Timings-6.2 Colours

Text Books/Reference Books/ Suggested Readings:

1. Alter Ego Level One Textbook, Annie Berthet, Catherine Hugot, Veronique M Kizirian,Hachette Publications

2. Apprenons Le Francais II & III, Mahitha Ranjit, 2017, Saraswati Publications

Weblinks:

www.bonjourfrance.com

Cours e Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO2	-	-	-	-	-	-	-	-	3	3	-	3	-	-
EL S107	FRENCH-I	CO3	-	-	-	-	-	-	-	-	3	3	-	3	-	-
rLSI0/	Ι	CO4	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO5	-	-	-	-	-	-	-	-	3	3	-	3	-	-
		CO6	-	-	-	-	-	-	-	-	3	3	-	3	-	-

Course Title/Code	DIGITAL HARDWARE MODELLING USING VHDL (ECH214B-T)	
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Prerequisites	Digital Electronics	
Course Objective	To understand the logic of various digital circuits this will further help in th	leir designing.
Course Outcom	es (COs)	Mapping
CO1	Understand the design units of VHDL and implementation of circuits using different modelling styles.	Skill development
CO2	Implement the circuits using Behavioral Modelling, concept of Delays, Dataflow Modelling and the concept of Resolution Function.	Employability
CO3	Designing, modeling, implementing and verifying combinational and sequential circuits using VHDL.	Employability, Entrepreneurship
CO4	Analysis of FSM and Test bench and Logic of several PLDs.	Employability, Entrepreneurship

SECTION A

Introduction: Introduction to Computer-aided design tools for digital systems, Design flow, Hardware Description Languages, VHDL capabilities and basic terminologies. VHDL Fundamentals: Identifiers,Data objects and data types, Operators, Operator overloading, Entity and architecture declaration, Introduction to behavioural, dataflow, structural and mixed modeling.

SECTION B

VHDL Statements: BehaviouralModelling: Process statement, Assignment statements, Delta delay, Wait statement, If statement, Case statement, Null statement, Loop statement, Exit statement, Next statement, Assertion and report statement, Multiple process, Types of delay, Signal drivers and the effect of delays on signal drivers, Dataflow modeling: Conditional signal assignment statement, Selected signal assignment statement, Unaffected value, Block statement, Concurrent assertion statement, Resolution function, Packages and Libraries, Subprograms: Functions, Procedures and Subprogram overloading, Structural Modeling: component declaration and instantiation, generics and configuration.

SECTION C

Combinational & Sequential Circuit Design: VHDL models and simulation of combinational circuits such as half adder, full adder, multiplexers, demultiplexers, encoders, decoders, code converters, comparators, Implementation of Boolean functions; VHDL models and simulation of sequential circuits: flip flops, shift registers, counters, State diagrams, Implementation of Mealy and Moore FSM using VHDL, Creating test benches.

SECTION D

Design of Microcomputer & Programmable Devices: Basic components of a computer, Architecture and implementation using VHDL, Design of circuits using Programmable logic devices: ROM, PLA, PAL, Other Programmable Logic Devices: GAL, PEEL, CPLD, FPGA

Text Books:

- 1. J Bhasker, A VHDL Primmer, Prentice Hall
- 2. Douglas L Perry, VHDL-IV Edition, TMH

Reference Books:

- 1. Volnei A Pedroni, Circuit Design with VHDL, PHI
- 2. Charles H Roth, Digital System Design using VHDL, PWS publishing
- 3. Navabi Z, VHDL-Analysis & Modeling of Digital Systems, McGraw Hill
- 4. Brown and Vranesic, Fundamentals of Digital Logic with VHDL Design, TMH
- 5. R P Jain, Modern Digital Electronics, III Edition, TMH

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	-	-	3	3	3	3	-	3	-	3
ECH214B-T	DIGITAL HARDWARE	CO2	3	3	3	3	-	-	-	3	3	3	-	3	3	3
	USING VHDL	CO3	3	3	3	3	-	-	-	3	-	3	3	3	-	3
		CO4	3	3	3	3	-	-	3	-	-	3	-	3	3	3

Course Title/Code	DIGITAL HARDWARE MODELLING USING VHDL LAB (ECI	H214B-P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Prerequisites	Digital Electronics lab	
Course Objective	To understand the logic of various digital circuits this will further help	in their designing.
Course Outcomes	s (COs)	Mapping
CO1	Demonstrate the use and application of Boolean Algebra in the areas of digital circuit reduction, expansion, and factoring.	Employability, Skill Development
CO2	Simulate and debug digital systems described in VHDL	Employability, Skill Development
СОЗ	Synthesize complex digital circuits at several levels of abstractions.	Employability, Entrepreneurship
CO4	Implement logic on an FPGA and a CPLD.	Employability, Entrepreneurship

List of Experiments:

Introduction to Xilinx ISE Foundation tool and synthesize and simulate half adder, full adder and half subtractor using schematic capture.

To model, simulate and synthesize all digital gates in VHDL.

To model, simulate and synthesize full adder and full subtractor using Dataflow Modeling style in VHDL.

To model and simulate Multiplexer using Dataflow and Behavioral Modeling, Demultiplexer using Structural Modeling style.

To model and simulate Encoder and Priority Encoder using Dataflow and Behavioral Modeling, Decoder using structural Modeling and verify using Test Bench.

To model and simulate Binary to Gray Code converter and BCD to Seven segment using VHDL and verify using a Test Bench.

To model and simulate a 3-bit comparator using VHDL and verify using Test Bench.

To model and simulate all flip flops using VHDL and verify using Test Bench.

To model and simulate 4-bit register (SIS0, PIPO, shift left and shift right) using VHDL and verify using Test Bench.

To model and simulate up counter, decade counter and up/down counter using VHDL and verify using Test Bench.

VHDL synthesis of models in FPGA from lab 3 and 4.

VHDL modeling and implementation of Project.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	-	-	3	3	3	3	-	3	-	3
ECH214B-P	DIGITAL HARDWARE MODELLING	CO2	3	3	3	3	-	-	-	3	3	3	-	3	3	3
	USING VHDL LAB	CO3	3	3	3	3	-	-	-	3	-	3	3	3	-	3
		CO4	3	3	3	3	-	-	3	-	-	3	-	3	3	3

Course Title/Code	PROFESSIONAL COMPETENCY ENHANCEMENT-II(CI	00202)
Course Type	Soft	
L-T-P Structure	1-0-0	
Credits	0.5	
Prerequisites	NA	
Course Objective	To acquire basic knowledge about aptitude	
Course Outcomes (COs)	Mapping
CO1	To improve students basic knowledge about Arithmetic Aptitude	Employability, Skill Development
CO2	To make students solve aptitude problems quickly utilizing the short cuts	Employability
CO3	To make students have the ability to 'quickly think on their feet'	Employability, Skill Development
CO4	To strengthen students communication skills	Employability

SECTION A - Quantitative Aptitude

Unit 1: Arithmetic I

Simplification-1.1.1 Use of BODMAS rule and Formulas for solving equations.-1.1.2 Simple Fractions and Decimal Fractions.-1.1.3 Surds and Indices.-1.2 Ratio and Proportion-1.2.1 Changes in Ratios, Combined Ratio and Continued Proportion.-1.2.2 Application in different questions.-1.2.3 Variations and Partnership.-1.3 Percentage-1.3.1 Basic Conversion, Consumption & Expenditure, Successive changes and Errors.-3.2 Application in Areas and Volumes.-1.4 Profit and Loss-1.4.1 Sales and Purchase Transactions. -1.4.2 MRP and Discount, Equivalent discounts.-1.4.3 Errors in weight (Dishonest Dealer).-1.5 Average-1.5.1 Combined and Mistaken Averages.-1.5.2 Changes in Average.-1.5.3 Application in Cricket and others.-1.5.4 Practice Exercise.-1.6 Interest-1.6.1 Simple and Compound Interest Formulae.-1.6.2 Relations and their Applications.-1.6.3 Practice Exercise.-Unit

2: Arithmetic II

2.1 Time and work-2.1.1 Combined work, Work & Wages, Work & Efficiency.-2.1.2 Working Alternatively, Work and Equations.-2.1.3 Pipes and Cisterns, Inlet and Outlet pipes, Capacity of Tank and Leakage-2.2 Alligations & Mixtures-2.2.1 Formula Based-2.2.2 Successive Displacement-2.2.3 Mixtures-2.2.4 Error in Measurement-2.2.5 Profit on False Weight2.3 Revision & Practice-2.3.1 Problems on Ages & Numbers-2.3.2 Calendar-2.3.3 Coding & decoding-2.3.4 Data Sufficiency-

SECTION B

Verbal Ability Test-Unit 3. Communication Skills in English--1.1 Relevance of Verbal Ability AND PREPARATORY GUIDELINES-1.2 Functional Grammar – Subject Verb Agreement-1.3 Tenses – Perfect, Simple, Continuous 1.4 Common Errors and rectification-Unit 4: Word Power Building Skills-2.1 Words: Antonyms, Synonyms, Analogies-2.2 Compound words: Homophones, Homonyms, Word Families-2.3 Root Word Technique for Prefixes & Suffixes-2.4: Word Power: 7 Tips for Learning New Words-2.5 Practice Vocabulary Exercises

SECTION C

Unit 5: Writing Skills-3.1 Writing: Introduction of Writing Skills, Objectives of enhancing Writing Skills & Types of Writing-3.2 Sentences, Phrases, Types of Sentences, Parts of Sentences-3.3 Paragraph Writing: Construction, Linkage & Cohesion-3.4 Practice Exercises: Writing Skills

SECTION D

Unit 6: Reading Skills-4.1 Objectives of Reading, Definition & Types of Reading & Importance of Reading-4.2 Reading Techniques: SW3R, Active Reading, Detailed, Speed-4.2 Practice Exercises: Short & Medium Passages

Text Books/Reference Books:

- 1. Quantitative Aptitude : R S Aggarwal, S Chand & Company Pvt Ltd
- 2. Quantitative Aptitude for CAT: Arun Sharma
- 3. Verbal Ability and Reading Comprehension: MVN Enterprises

Web links:

- 1. http://www.indiabix.com/aptitude/questions-and-answers/
- 2. http://www.indiabix.com/non-verbal-reasoning/questions-and-answers/

Course Code	Course	Course Outcom es	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PS O1	PSO 2
		CO1	3	3	-	-	-	-	3	3	3	3	-	3	-	3
00000	PROFESSIONAL COMPETENCY	CO2	3	3	3	3	-	-	-	3	3	3	-	3	3	3
CD0202	ENHANCEMENT- II	CO3	3	3	3	3	-	-	-	3	-	3	3	3	-	3
		CO4	3	3	3	3	-	-	3	-	-	3	-	3	3	3

Course Title/Code	ELECTRONIC DESIGN WORKSHOP (ECW221B)	
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	NA	
Course Objective	To provide hands-on experience on the state-of-the-art Cadence EDA tools for will have an exposure to the Circuit Design & Simulation, Layout, Physical V extraction.	or VLSI Design. The participants Verification (DRC, LVS), and
Course Outcome	es (COs)	Mapping
CO1	Analyze the characteristics of Oscillators and amplifiers	Employability/Skill development
CO2	Analyze the characteristics of Multivibrators	Employability/Skill development
CO3	Analyze the frequency response of amplifiers using PSpice.	Employability, Entrepreneurship
CO4	Model the design of electronic circuits using PSpice	Employability, Entrepreneurship

Experiment List:

Software proposed: ORCAD/EAGLE/DESIGN SPARK

- 1. Introduction to PCB Design Software, Editing and Routing.
- 2. Designing of low pass, high pass, all pass & band pass filters for a given cut off frequency
- 3. Designing of half-wave rectifier with effects of variable capacitance
- 4. Designing of full-wave rectifier with effects of variable capacitance.
- 5. Designing of 5V power supply
- 6. Designing of Half adder and Full Adder using gates
- 7. Introduction to Screen Printing, Component Mounting, Soldering and Drilling.
- 8. Project using design soft.

CO-PO MAPPING

Course Code	Course	Cou rse Out com es	P O1	P O2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	-	-	3	-	-	-	3	3	3	3	3	3
ECW221B	IC DESIGN	CO2	3	3	-	3	-	-	-	3	3	-	3	3	3	3
	P P	CO3	3	3	3	3	-	3	3	-	-	-	3	3	3	3
		CO4	3	3	3	3	3	-	-	-	-	-	3	3	3	3

Course Title/Code	PROGRAMMING FOR PROBLEM SOLVING USING PYTHON (CSW208	B)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisite s	NA	
Course Objective	The course is designed to provide Basic knowledge of Python. Python programmin software engineers, system analysts, program managers and user support personne learn the Python programming language.	ng is intended for l who wish to
Course Outcon	nes (COs)	Mapping
CO1	Analyze the concept of Dynamic memory management, algorithms and their complexity ; demonstrate the abstract properties and operations of Linear data structures (using Static Memory Allocation) : Array ; To apply different Searching and Sorting algorithms.	Skill development
CO2	Demonstrate the abstract properties and operations of Linear data structures (using Dynamic Memory Allocation) : Link List and variations of Linked List.	Employability
CO3	Demonstrate the abstract properties and operations of Linear data structures (using Static & Dynamic Memory Allocation) : Stacks, Queues	Employability,
CO4	Demonstrate the abstract properties and operations of Non Linear data structures (using Static & Dynamic Memory Allocation) : Trees, Graphs	Employability

Section-A

Introduction: Introducing the Python language, Understanding the Python shell, writing a simple program, Development environment setup, Concept of module and packages, Basic Operators – Arithmetic, Relational, Assignment, Logical, Membership and Identity operators, Variables and Data Types, Understanding Mutable and

Immutable types, Working with various type – None, Boolean(True/False), Numeric(int, float, long), Sequence(String, List & Tuple), Mapping(Dictionary) Understanding the concept of header & suites in the language construct, Conditionals and inline syntax, Multiple assignments in variables, Working with data type conversion, Working with Loops – While & For Effects of break, continue, pass & else statement in various construct.

Section-B

implementing custom functions, Variable scope – Global vs. Local, dealing with various function arguments – default, named and variable length arguments, Understanding the concept of pass by value and pass by reference, Returning multiple values from a function, Anonymous & Recursive function, Understanding Strings in Python & different type of its delimiter, Working with special string operators & formatted strings, Exploring some useful built in string methods, Working with Date & Time,

Section-C

Understanding File Operations, Working with the File Object for reading & writing, Object oriented programming in Python, Understanding Classes & Objects, and Exploring different components of a Class, Class inheritance & Method overriding, Working with multiple Inheritance, Understanding the Abstraction mechanism in Python, Built-in Class attributes, Exception handling,

Section-D

Python DB Interaction. Python Demonstration: Reading and Writing CSV files, The Series Data Structure, Querying a Series, The Data Frame Data Structure, Data Frame Indexing and Loading, Querying a Data Frame, Indexing Data frames, Missing Values.

LIST OF EXPERIMENTS:

Using IDE to create and execute Python Program.

Programming Constructs in Python - Hands- on - Practice

Control Structure - Hands- on - Practice

String & List : Hands- on - Practice

Operation on Tuples : Hands- on - Practice

Mapping(Dictionary) : Hands- on - Practice

Function - Pass by reference : Hands- on - Practice

Working with the File Object for reading & writing

UML, Object Oriented Programming

Class inheritance & Method overriding : Hands- on – Practice

Exception handling : Hands- on - Practice

Python DB Integration

Text Books:

Dave Kuhlman, "A Python Book: Beginning Python, Advanced Python, and Python Exercises", December 2013.

Mark Lutz's, "Learning Python", O'Reilly, 2001

Sahana Kumaraswamy, Roy Antony Arnoid G, "Assignment for Object Oriented Programming using Python", Infosys, Dec 2015.

Lutz, Mark, and Mark Lutz. Programming python. Vol. 8. O'Reilly, 1996.

Sommerville, "Software Engineering", Addison Wesley, 1999.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
	PROGRAMMIN G FOR	CO1	3	3	-	-	3	_	-	-	3	3	3	3	3	3
CSW208 B	PROBLEM SOLVING	CO2	3	3	-	3	-	-	-	3	3	-	3	3	3	3
	USING PYTHON	CO3	3	3	3	3	-	3	3	-	-	-	3	3	3	3
		CO4	3	3	3	3	3	_	-	-	-	-	3	3	3	3

Course Title/Code	RESEARCH & INNOVATION –I (RDO506)	
Course Type	Core	
L-T-P Structure	0-1-0	
Credits	1	
Course Objective	To apply the contextual knowledge of designing in research and to understand and practice that are to be followed in the research activities. The student is able choor research.	d adopt the ethical se specific area of
Course Outcon	nes (COs)	Mapping
CO1	Describe the work done by various researchers relevant to the research topic	Skill Development
CO2	Compare the relevant theory and practices followed in a logical way and draw appropriate conclusions	Skill Development
CO3	Describe the research methodologies/approaches/techniques used in the literature	Skill Development
CO4	Create a research article based on collected information or findings through an appropriate abstract, headings, reference citations and smooth transitions between sections	Skill Development

Section A

Unit-1 Literature Survey (LS)/Design of Experiment

1.1 Collection of research papers related to previously identified gap/problem (15 papers or more)

1.2 Comprehend and arrange the literature based on the idea framed

1.3 Presenting the collected data and inferring it with the further scope of expansion and Designing the experiment wherever applicable.

Section B

Unit-2 Structuring of Review Paper and setting up of experimental facility

2.1 Analysis of different approach/methodology adopted by various researchers

2.2 Listing out the components of the paper/ setting up experimental facility w.r.t the problem

2.3 Identification of suitable Journal or Conference

2.4 Formatting/Styling the paper according to the respective template

Section C

Unit-3 Departmental Presentation in the Mid Term Exam

- 3.1 Structuring and preparation of PPT
- 3.2 Mock presentation
- 3.3 Review on presentation skills and content delivered both
- 3.4 Incorporating the review comments in the slides

CO-PO Mapping

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	3	-	-	-	_	-	-	_	_	3	3	3
RDO50	RESEARCH &	CO2	3	3	3	-	3	-	-	3	3	3	-	3	3	3
6	-I	CO3	3	3	3	3	3	-	-	3	3	3	-	3	3	3
		CO4	3	3	3	3	3	_	_	3	3	3	-	3	3	3

SEMESTER V

SUBJECT CODES	SUBJECT NAME	PRE- REQUISITE	**OFFERING DEPARTMENT	COURSE TYPE (CORE/ELEC TIVE / UNIVERSITY COMPULSO RY)	L	т	Ρ	NO. OF CONTA CT HOURS PER WEEK	NO. OF CRE DIT S
ECH326B-T	MICROCONTROLLER S & INTERFACING				3	1	0	4	4
ECH326B-P	MICROCONTROLLER S & INTERFACING LAB	NA	ECE	CORE	0	0	2	2	1
ECH314B-T	CMOS VLSI DESIGN	NA							
ECH331B-T	DIGITAL SYSTEM DESIGN	NA							
ECH401B-T	INFORMATION THEORY AND CODING	NA	ECE	ELECTIVE	3	0	0	3	3
ECH403B-T	WIRELESS SENSOR NETWORKS	NA							

	PROTOTYPING IOT BASED AFFORDABLE								
ECH327B-T	HEALTHCARE SYSTEM	NA							
CSH310B-T	ARTIFICIAL INTELLIGENCE	NA	CSE						
CSH201B-T	OOPS USING JAVA	NA							
ECH314B-P	CMOS VLSI DESIGN LAB	VLSI DESIGN							
ECH331B-P	DIGITAL SYSTEM DESIGN LAB	ELECTRONIC							
	INFORMATION THEORY AND		ECE						
ECH401B-P	CODING LAB	NA							
ECH403B-P	NETWORKS LAB	NA		ELECTIVE	0	0	2	2	1
	PROTOTYPING IOT BASED AFFORDABLE HEALTHCARE								
ECH327B-P	SYSTEM LAB	NA							
CSH310B-P	ARTIFICIAL INTELLIGENCE LAB	NA	CSE						
CSH201B-P	OOPS USING JAVA	NA							
ECH305B-T	INTERNET OF THINGS	NA	ECE	CORE	2	0	0	2	2
ECH305B-P	INTERNET OF THINGS LAB	NA	ECE	CORE	0	0	2	2	1
MCS232	FUND OF FINANCE								
MCS231	BASICS OF ECONOMICS	NA	MGMT	ELECTIVE	1	1	0	2	2
RDO605	RESEARCH & INNOVATION-II	NA	ECE	CORE	0	1	0	1	1
CDO301	PROFESSIONAL COMPETANCY ENHANCEMENT-III	NA	CDC	CORE	4	0	0	4	1
ECW210B	ALTAIR WORKSHOP	NA	ECE	CORE	0	0	4	4	2
	-			TOTAL	1 3	3		26	18
ECH323B- T	SYSTEM DESIGN USING VERILOG	DIGITAL HARDWARE DESIGN	ECE	CORE	3	0	0	3	3

LAB

2

r		
Course Title/Code	MICROCONTROLLERS & INTERFACING (ECH326B-T)	
Course Type	Core (Departmental)	
L-T-P Structure	3-1-0	
Credits	4	
Prerequisites	NA	
Course Objective	To get familiar with the basic 8-bit (8051) controllers, their architecture, internal or their functions, interfacing an external device with the processors/ controllers.	ganization and
Course Outcome	es (COs)	Mapping
CO1	Describe the concept of microcontrollers and methods of programming the same.	Employability
CO2	Differentiate between the various addressing modes and work on the various instruction sets.	Employability
CO3	Analyze the working of 8051 Microcontroller by knowing its architecture, addressing modes and interrupts.	Employability/Sk ill development
CO4	Build microcontroller-based systems around 8051 and PIC.	Employability/Sk ill development

SECTION-A

INTRODUCTION OF MICROCONTROLLER: Different types of microcontrollers: Embedded microcontrollers, External memory microcontrollers; Processor Architectures: Harvard V/S Princeton, CISC V/S RISC; microcontrollers memory types; microcontrollers features: clocking, i/o pins, interrupts, timers, peripherals.

SECTION-B

MICROCONTROLLER ARCHITECTURE: Introduction to PIC microcontrollers, Architecture and pipelining, program memory considerations, addressing modes, CPU registers, Instruction set, simple operations.

SECTION-C

Microcontrollers - Microcontroller 8051- Architecture, Pin Diagram, I/O Ports, Internal RAM and Registers, Interrupts, Addressing Modes, Memory Organization and External Addressing, Instruction Set, Assembly Language Programming, Real Time Applications of Microcontroller- Interfacing with LCD, ADC, DAC, Stepper Motor, Key Board and Sensors.

SECTION-D

Embedded Systems-Introduction, Classification, Processors, Hardware Units, Software Embedded into System, Applications and Products of Embedded Systems, Structural Units in Processor, Memory Devices, I/O Devices, Buses, Interfacing of Processor Memory and I/O Devices, Case Study of an Embedded System for a Smart Card.

Text Books:

- 1. B. B. Brey: The Intel Microprocessors, Architecture, Programming and Interfacing, Pearson Education.
- 2. Design with PIC Microcontrollers by John B. Peatman, Pearson.
- 3. Raj Kamal: Embedded Systems- Architecture, Programming and Design, TMH, New Delhi.
- 4. V. Udayashankara and M. S. Mallikarjunaswamy: 8051 Microcontroller, TMH, New Delhi.
- 5. Mazidi and Mazidi: The 8051 Microcontroller and Embedded Systems, Pearson Education.
- 6. D. V. Hall: Microprocessors and Interfacing, TMH
- 7. Programming and Customizing the 8051 Microcontroller : Predko ; TMH.

Course Code	Course	Course Outcomes	PO1	P O 2	P O 3	Р О 4	P O 5	Р О 6	P O 7	P O 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
		CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	-
	MICROCONTRO	CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	-
ECH326B-1	INTERFACING	CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	-
		CO4	3	3	3	-	-	-	-	-	3	3	-	3	3	-

Course Title/Code	MICROCONTROLLERS & INTERFACING LAB (ECH326B-P)	
Course Type	Core (Departmental)	
L-T-P Structure	0-0-2	
Credits	1	
Prerequisites	NA	
Course Objective	To get familiar with the basic 8-bit (8051) controllers, their architecture, internal their functions, interfacing an external device with the processors/ controllers.	organization and
Course Outcome	es (COs)	Mapping
CO1	To demonstrate the microcontroller using 8051 controller and evaluate on various parameters	Employability
CO2	Demonstrate Interfacing of peripherals to microcontrollers.	Employability
CO3	Perform data collection and acquisition using 8051 microcontroller	Employability
CO4	Design real world applications using microcontrollers	Employability/ Skill Development

List of Experiments:

- 1. Write Assembly language Program to generate 10 kHz square wave Using 8051.
- 2. Study and analysis of interfacing of LCD using 8051 controller.
- 3. Study and interfacing of IR (RC5 protocol) and RF Communication using 8051 controller.
- 4. To interface a PWM based voltage regulator using 8051 microcontrollers.
- 5. To study Programming and Transmission & reception of data through Serial port between two PCs & study of Parallel printer port using 8051.
- 6. Write an Assembly language Program to generate 10 kHz square wave Using 8051
- 7. To study implementation & interfacing of Display devices Like LCD, LED Bar graph & seven segment display with Microcontroller 8051/AT89C51
- To study implementation & interfacing of Different motors like stepper motors, DC motors & servo Motors. 8051
- 9. Write an ALP for temperature & pressure measurement 8051.To study Programming and Transmission & reception of data through Serial port & study of Parallel

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	3	-	5	-	-	-	3	3	3	3	3	3
ECH326B	MICROCONTROL LERS &	CO2	3	3	3	-	5	-	-	-	3	3	3	3	3	3
-Р	INTERFACING LAB	CO3	3	3	3	-	5	-	-	-	3	3	3	3	3	3
		CO4	3	3	3	-	5	-	-	-	3	3	3	3	3	3

Course Title/Code	SYSTEM DESIGN USING VERILOG (ECH323B-T)	
Course Type	CORE	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisite s	Digital Hardware design	
Course Objective	Apply the System Verilog verification features, including classes, constrain coverage, strings, queues and dynamic arrays for more effective and efficie	ed random stimulus, nt verification.
Course Outcon	nes (COs)	Mapping
CO1	Identify new data types, literals, procedural blocks, statements, and operators, relaxation of Verilog language rules.	Employability/Skill Development
CO2	Analyze synthesis issues, enhancements to tasks and functions, new hierarchy and connectivity features, and interfaces.	Employability/Skill Development
CO3	Apply the System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays.	Employability/Skill Development
CO4	Utilize the features of System Verilog for more effective and efficient verification.	Employability/Skill Development

SECTION A

Introduction: Introduction to System Verilog: What is system verilog? Features of SV, Event regions in SV; Data Types: 4-State type, 2-State type, Real, Arrays, Packed, Unpacked, Dynamic Array, Queue, Associative Array, Array query function, Array ordering method, User define data type, Structure and Union (Basic), String (Basic), Enumeration, Const, Casting, static and dynamic.

SECTION B

Data Classes, Statements & Subprograms: Verilog operator overview, System verilog operators, Arithmetic, increment/decrement, bitwise, shift, wildcard equality, inside Verilog loops overview for each, do while loop, Package, `include and import, Scope and Lifetime, Parameter, Function, Task. Introduction to class: Object Constructor, Parametrized class, This Lifetime in class, Function and task in class, Features of OOP, Encapsulation, local, protected, Inheritance, super, Static members in class. Polymorphism, Virtual method, Abstraction, Virtual class, Singleton class, Shallow copy, Deep copy.

SECTION C

Semaphore, Mailbox & Randomization: What is semaphore? Semaphore methods, What is mailbox? Mailbox methods, Parametrized mailbox, Bounded, unbounded mailbox; Why randomize? Verilog constraint randomization, SV constraint randomization, \$urandom, randomize(), Rand vsRandc, Pre and post randomize , Controlling randomization, Relational operator in constraint, Bidirectional constraint, Inside, Implication constraint, Inline constraint, Constraint in inheritance.

SECTION D

Processes, Coverage & Assertion: Final block, Block statement, Fork join, fork join_any, fork join_none, Wait and disable, what is event? Conditional event control, named event, Event triggering, Blocking and non-blocking, What is program block? Re-active region, what is Interface? Modport, Parameterized interface, Virtual interface, What is coverage? Code coverage, Functional coverage, Covergroup, Coverpoint, Embedded covergroup, Bins, types of bins,bins for transition, wildcard, illegal bins, ignore bins, cross-coverage, coverage option, What is assertion? Immediate and concurrent, Assertion severity, Property blocks and sequences, Assertion operator (Basic).

CO-PO MAPPING

Course Code	Course	Course Outcom es	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
ECH323B-T	SYSTEM DESIGN USING VERILOG	CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	SYSTEM DESIGN USING VERILOG LAB (ECH323B-P)									
Course Type	CORE									
L-T-P Structure	0-0-2									
Credits	1									
Pre-requisiti es	Digital hardware design									
Course Objective	Appreciate and apply the System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.									
Course Outcon	Mapping									
CO1	Apply System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.	Employability/Skill Development								
CO2	Synthesis features, including new data types, literals, procedural blocks, statements, and operators, relaxation of Verilog language rules, fixes for synthesis issues, enhancements to tasks and functions, new hierarchy and connectivity features, and interfaces.	Enterprenurship								

List of Experiments:

- Design and verify combinational circuits using System Verilog.
- Design and verify D Flip-Flop using System Verilog.
- Design and verify Sequential circuits using System Verilog.
- Example of a simple UVM testbench consisting of a single uvm_env class.
- Basic UVM "Hello World" program using System Verilog.
- Create multiple objects of a class, calling the constructor and a print method using System Verilog.
- Example of Random-Access Memory using System Verilog.
- Example of testing a UVM scoreboard using SVUnit.
- projects

CO-PO MAPPING

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH323B- T	SYSTEM DESIGN USING VERILOG	CO1	3	3	3	-	3	-	-	-	3	3	3	3	3	3
		CO2	3	3	3	-	3	-	-	-	3	3	3	3	3	3
Course Title/Code	CMOS VLSI DESIGN (ECH314B-T)															
----------------------	--	---------------														
Course Type	Elective (Departmental)															
L-T-P Structure	3-1-0															
Credits	4															
Prerequisites	VLSI design															
Course Objective	To understand the foundation of fabrication and designing of integrated circuits															
Course Outcomes (COs)	Mapping														
CO1	Analyze complex microelectronics circuits and systems	Employability														
CO2	Design layout and schematics related with various CMOS based application	Employability														
CO3	Analyzing combinational circuits based on CMOS by understanding their working principles	Employability														
CO4	Analyze the performance issues & inherent trade off involved in system design.	Employability														

SECTION A

Implementation Strategies for Digital IC's: Introduction, from custom to semicustom and structured Array design approaches, Custom circuit design, Cell based design methodology – Standard cell, compiled cell, Microcells, Mega cells and intellectual property, Array based implementation approaches – Prediffused arrays and Prewired arrays. Coping with Interconnect: Introduction, Capacitive parasitics – Capacitance & Reliability, Capacitance & Performance, Resistive parasitic – Resistance & Reliability, Electro migration, Resistance & performance, Inductive parasistics – Inductance & Reliability, Inductance & Performance, Advanced interconnect techniques – Reduced swing circuits, Current mode transmission techniques

SECTION B

Timing Issues in Digital Circuits: Introduction, Timing classification of digital systems, Synchronous interconnect, Mesochronous interconnect, Plesiochronous interconnect, Asynchronous interconnect, Synchronous design – Synchronous timing basics, Sources of Skew & Jitter, Clock distribution techniques, Latch based clocking, Self-timed circuit design – Self timed logic, Completion –signal generation, Self-timed signaling, Synchronizers & arbiters, Clock synthesis & synchronization using basic concept, Building blocks of a PLL, Distributed clocking using DLL's, Optical clock distribution, Synchronous versus asynchronous design.

SECTION C

Designing Arithmetic Building Blocks: Introduction, Data paths in digital processor architecture, Adder: binary adder (Definition, Logic design consideration), Full adder (Circuit design & consideration), Multiplier: definitions, Partial product generation, Partial product accumulation, Final addition, Shifter – Barrel shifter, Logarithmic shifter, Other arithmetic operators, Power & speed trade-offs in Datapath structures, Design time power reduction techniques, Run time power management, Reducing the power in standby (or sleep) mode.

SECTION D

Designing Memory & Array Structures: Introduction: Memory classification, Memory architectures & building blocks, Memory core – ROM, Non-volatile Read-Write memories, RAM, Contents- Addressable or Associative memory (CAM), Memory peripheral circuitry, Address decoders, Sense amplifiers, Voltage references, Drivers /

Buffers, Timing & control, Memory reliability and yield, Static noise margin, Memory yield, Power dissipation in memories, Sources of power dissipation in memories, Partitioning of the memory, Addressing the active power dissipation, Data retention dissipation, Case study in memory design, PLA, 4 –Mbit SRAM, 1-Gbit NAND flash memory.

Text Books:

1. Jan M Rabaey, Digital Integrated Circuits - A Design Perspective, Prentice Hall.

2. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits - Analysis & Design, MGH, Second

Ed., 1999.

3. Reference Books:

4. R. J. Baker, H. W. Li, and D. E. Boyce, CMOS circuit design, layout, and simulation. New York: IEEE Press, 1998.

5. David A. Hodges, Horace G. Jackson, and Resve A. Saleh, Analysis and Design of Digital Integrated Circuits, Third Edition, McGraw-Hill, 2004.

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH314B-T		CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	-
	CMOS VLSI DESIGN	CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	-
		CO3	3	3	3	-	3	-	-	-	3	3	-	3	3	-
		CO4	3	3	3	-	3	-	-	-	3	3	-	3	3	-

Course Title/Code	CMOS VLSI DESIGN LAB(ECH314B-P)	
Course Type	Elective (Departmental)	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	VLSI design	
Course Objective	To understand the foundation of fabrication and designing of integrated circuits	
Course Outcomes (C	COs)	Mapping
CO1	Design combinational circuits using VLSI designing Platforms like Tanner	Employability
CO2	Design layout and schematics related with various CMOS based application	Employability
CO3	Design sequential circuits using VLSI designing Platforms like Tanner	Employability
CO4	Implementing the VLSI design for real time problems.	Employability

List of Experiments:

- To construct & Analyze CMOS Inverter in Tanner EDA.
- To construct & analyze the logic gates in Tanner EDA.
- To construct & analyze the half adder in Tanner EDA.
- To Construct & analyze Full adder in Tanner EDA.
- To construct & analyze D Flip Flop in Tanner EDA.
- To construct & analyze current mirror in Tanner EDA.
- To construct & analyze differential amplifier in Tanner EDA.
- To construct & analyze operational amplifier in Tanner EDA.
- To construct & analyze trans-conductance amplifier in Tanner EDA.
- Mini Project

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH314B-P	CMOS VLSI DESIGN LAB.	CO1	3	3	3	-	3	-	-	-	3	3	3	3	3	3
		CO2	3	3	3	-	3	-	-	-	3	3	3	3	3	3
		CO3	3	3	3	-	3	-	-	-	3	3	3	3	3	3
		CO4	3	3	3	-	3	-	-	-	3	3	3	3	3	3

Course Title/Code	INFORMATION THEORY AND CODING (ECH401B-T)										
Course Type	Elective (Departmental)										
L-T-P Structure	3-1-0										
Credits	4										
Prerequisites	NA										
Course Objective	Students will be able to formulate the performance of the channel a by implementing the techniques of information measurement and e	nd reduce the error probability respectively rror correction coding.									
Course Outcom	es (COs)	Mapping									
CO1	Formulate the channel performance using Information theory	Employability, Skill Development									
CO2	Comprehend various error control code properties	Employability, Skill Development									
CO3	Apply linear block codes for error detection and correction Employability, Skill Development										
CO4	Design BCH & RS codes for Channel performance improvement against burst errors. Employability, Skill Development										

SECTION-A

Information Theory: Definition of Information, Entropy, Mutual Information, Properties of Mutual Information, Fundamental Inequality, I.T. Inequality, Divergence, Properties of Divergence, Divergence Inequality, Relationship between entropy and mutual information, Chain Rules for entropy, relative entropy and mutual information.

SECTION-B

Channel Capacity: Uniform Dispersive Channel, Uniform Focusing Channel, Strongly Symmetric Channel, Binary Symmetric Channel, Binary Erasure Channel. Channel Capacity of the all these channels, Channel Coding Theorem, Shannon-Hartley Theorem, Data Compression: Kraft inequality, Huffman codes, Shannon-Fano coding, Arithmetic Coding

SECTION-C

Linear Block Codes: Systematic linear codes and optimum decoding for the binary symmetric channel; Generator and Parity Check matrices, Syndrome decoding on symmetric channels; Hamming codes; Weight enumerators and the Mac Williams identities; Perfect codes. Cyclic Codes, BCH codes; Reed-Solomon codes, MDS codes; Spectral properties of cyclic codes.

SECTION-D

Decoding of BCH codes: Berlekamp's decoding algorithm, Massey's minimum shift register synthesis technique and its relation to Berlekamp's algorithm. A fast Berlekamp – Massey algorithm. Convolutional codes Wozencraft's sequential decoding algorithm, Fann's algorithm and other sequential decoding algorithms; Viterbi decoding algorithm, Turbo Codes, Concatenated Codes.

Text Books:

1. Information Theory and Coding by "N Abramson"

- 2. Information Theory by "R B Ash"
- 3. Error control coding by "Shu Lin and D J Costello"

Reference Books:

- 1. Information theory and Coding Basics and Practices by "Veluswamy S"
- 2. Information Theory and Coding by "MuralidharKulkarni and K S Shivaprakasha"

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	3	3	-	-	-	-	3	3	-	3	3	-
ECH401B- T	INFORMATION	CO2	3	3	3	3	-	-	-	-	3	3	-	3	3	-
	THEORY AND CODING	CO3	3	3	3	3	-	-	-	-	3	3	-	3	3	-
		CO4	3	3	3	3	-	-	-	-	3	3	-	3	3	-

Course Title/Code	INFORMATION THEORY AND CODING LAB (ECH401B-P)	
Course Type	Elective (Departmental)	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	Students will be able to formulate and reduce the performance of chann respectively by implementing the techniques of information measureme	el and error probability ent and error correction coding.
Course Outcom	es (COs)	Mapping
CO1	Explain the significance of this quantitative measure of information in the communications systems	Employability, Skill Development
CO2	Identify efficient data compression scheme for a given information source	Employability, Skill Development
CO3	Analyze various entropy parameters and channel capacity of a system	Employability, Skill Development
CO4	Describe the theoretical framework upon which error-control codes are built	Employability, Skill Development

LIST OF EXPERIMENTS

- Determination of entropy of a given source
- Determination of various entropies and mutual information of given channel (Noise free channel)
- Determination of various entropies and mutual information of a given channel (Binary symmetric channel)
- Generation and evaluation of variable length source coding using MATLAB (Huffman Coding and decoding)
- Coding & decoding of Linear block codes
- Coding & decoding of Cyclic codes
- Coding and decoding of convolutional codes
- Coding and decoding of BCH codes

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
		CO1	3	3	3	3	-	-	-	-	3	3	-	3	3	-
ECH401B- P	INFORMATION	CO2	3	3	3	3	-	-	-	-	3	3	-	3	3	-
	CODING LAB	CO3	3	3	3	3	-	-	-	-	3	3	-	3	3	-
		CO4	3	3	3	3	-	-	-	-	3	3	-	3	3	-

Course Title/Code	WIRELESS SENSOR NETWORKS (ECH403B-T)	
Course Type	Elective (Departmental)	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisites	NA	
Course Objective	Provide students with the fundamentals of WSN architecture, network plat design energy-efficient MAC protocols for sensor networks in IoT environ	forms, and applications to ments.
Course Outcome	es (COs)	Mapping
CO1	Explain the concept of Wireless Sensor Networks by studying the architecture of a single node	Employability, Skill Development
CO2	Differentiate and understand the various routing protocols for ad-hoc wireless networks	Employability, Skill Development
CO3	Describe the concept of MAC protocols in Wireless Sensor Networks and identify devices based on these MAC standards	Employability, Skill Development
CO4	Analyze design constraints and challenges in WSN like network lifetime, security, and analyzing a few networks through simulations.	Employability, Skill Development

SECTION A

SENSOR NETWORKS – INTRODUCTION & ARCHITECTURES: Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, WSN application examples, Single-Node Architecture -Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture - Sensor Network Scenarios, Transceiver Design Considerations, Optimization Goals and Figures of Merit.

SECTION B

ADHOC NETWORKS AND ROUTING PROTOCOLS: Elements of Ad hoc Wireless Networks, Issues in Ad hoc wireless networks, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classifications of Routing Protocols, Table Driven Routing Protocols - Destination Sequenced Distance Vector (DSDV), On–Demand Routing protocols –Ad hoc On–Demand Distance Vector Routing (AODV).

SECTION C

WSN NETWORKING CONCEPTS AND PROTOCOLS:MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols and Wakeup Concepts - S-MAC, The Mediation Device Protocol, Contention based protocols - PAMAS, Schedule based protocols – LEACH, IEEE 802.15.4 MAC protocol, Routing Protocols- Energy Efficient Routing, Challenges and Issues in Transport layer protocol.

SECTION D

SENSOR NETWORK SECURITY: Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Layer wise attacks in wireless sensor networks, possible solutions for jamming, tampering, black hole attack, flooding attack. Key Distribution and Management, Secure Routing – SPINS, reliability requirements in sensor networks. INTRODUCTION TO CONTIKIOS, Node-level Simulators – NS2 and its extension to sensor networks, COOJA, , Programming beyond individual nodes – State centric programming.

Suggested Text / Reference Books

1. C. Siva Ram Murthy and B. S. Manoj, —Ad Hoc Wireless Networks Architectures and Protocols^{II}, Prentice Hall, PTR, 2004.

2. Holger Karl, Andreas willig, —Protocol and Architecture for Wireless Sensor Networksl, John wiley publication, Jan 2006

3. Feng Zhao, Leonidas Guibas, —Wireless Sensor Networks: an information processing approachl, Elsevier publication, 2004.

4. Charles E. Perkins, —Ad Hoc Networkingl, Addison Wesley, 2000.

5. I.F. Akyildiz, W. Su, Sankara Subramaniam, E. Cayirci, —Wireless sensor networks: a surveyl, computer networks, Elsevier, 2002, 394 - 422.

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH403B- T		CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	-
	WIRELESS	CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	-
	NETWORKS	CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	-
		CO4	3	3	3	-	-	-	-	-	3	3	-	3	3	-

Course Title/Code	WIRELESS SENSOR NETWORKS LAB (ECH403B-P)	
Course Type	Elective (Departmental)	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	Provide students with the fundamentals of WSN architecture, netwo design energy-efficient MAC protocols for sensor networks in IoT e	rk platforms, and applications to nvironments.
Course Outcome	es (COs)	Mapping
CO1	Implement protocols on platform like MKR1000	Employability, Skill Development
CO2	Demonstrate data exchange for MKR1000	Employability, Skill Development
CO3	Analyze the various parameters of Audio Data	Employability, Skill Development
CO4	Analyzing networks through simulations and implementing real time problems.	Employability, Enterprenurship

LIST OF EXPERIMENTS

- Sensing data using the MKR1000 board.
- Programming a MKR1000 board over the air in a standalone WiFi network.
- Collecting and exchanging data on 433mHz frequency.
- Sensing audio data and interpreting results.
- Visualizing sensed data.
- Project

Course Code	Course	Course Outcomes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
		CO1	3	3	3	-	-	-	-	-	3	3	3	3	3	-
ECH403B- P	WIRELESS SENSOR NETWORKS LAB	CO2	3	3	3	-	-	-	-	-	3	3	3	3	3	-
		CO3	3	3	3	-	-	-	-	-	3	3	3	3	3	-
		CO4	3	3	3	-	-	-	-	-	3	3	3	3	3	-

Course Title/Code	OOPS USING JAVA (CSH201B-T)	
Course Type	Elective (Departmental)	
L-T-P Structure	3-1-0	
Credits	4	
Prerequisites	NA	
Course Objective	Students will be able to apply the object-oriented programming principles the real life problems.	and techniques for solving
Course Outcome	es (COs)	Mapping
CO1	Describe the concept of Object Oriented Programming with introduction to JAVA.	Employability, Skill Development
CO2	Apply the principles of Inheritance and encapsulation to create public and private classes and member functions.	Employability, Skill Development
CO3	Explain the concept of exception handling in JAVA and also learn about the various API packages.	Employability, Skill Development
CO4	Quantify the challenges in JAVA programming by understanding the features of applets and Input Output streams.	Employability, Skill Development

SECTION-A

Overview of Applications: Desktop Based Application like Library Management System in order to understand problem solving skills. Introduction to OOPS: Paradigms of Programming Languages - Basic concepts of Object Oriented Programming, Differences between Procedure Oriented Programming and Object Oriented Programming, Objects and Classes, Data abstraction and Encapsulation, Inheritance, Polymorphism, Dynamic binding, Message communication, Benefits of OOP, Application of OOPs. Introduction to Java: History of Java, Java features, Java Environment: JDK API. Types of java program, Creating and Executing a Java program, Java Tokens: Keywords, Character set, Identifiers, Literals, Separator, Java Virtual Machine (JVM), Comments in Java program, Command line input and Arguments, Data Types, Variables, Operators, Control Statements, Arrays, String handling.

SECTION-B

Class and objects: Defining a class, Methods, creating objects, Accessing class members. Constructors, Method overloading, Static members, Nesting of Methods, this keyword. Inheritance: Defining a subclass, deriving a sub class, Single Inheritance, Multilevel Inheritance, Hierarchical Inheritance, overriding methods, super keyword, Final variables and methods, Final classes, Final methods, Abstract methods and classes, Visibility Control, Public access, Private access, protected. Defining interface, extending interface, Implementing Interface, Accessing interface variables.

SECTION-C

Packages: Java API Packages: System Packages, Naming Conventions, Creating & Accessing a Package, Adding Class to a Package, Hiding Classes-Exception Handling: Exception Handling Mechanism, using try and catch blocks, nesting try Statements, Multiple catch Block, Throwing Exceptions, using finally clause, creating a Custom Exception. Multithreading: Getting the main thread, naming a Thread, pausing a thread, creating a Thread with the Runnable Interface, Creating a Thread with Thread Class, Creating Multiple Threads, Waiting for (joining) Threads, Checking

whether thread is alive, Setting Thread Priority and Stopping Threads, Thread Synchronization, Suspending and Resuming Threads.

SECTION-D

I/O Streams: I/O Basics Reading Console Input Writing Console Output, Using the File Class, Input Stream, Output Stream, File Input Stream, File Output Stream, Buffered Input Stream, Buffered Output Stream, Random Access File, File Reader, File Writer, Buffered Reader, Buffered Writer, Serialization. Applets: Introduction: Applet Life cycle, Creating & Executing an Applet, Applet tags in HTML, Parameter tag, drawing graphics in Applets, Adding controls to Applets: Text Fields, Buttons

Text Books:

- 1. Programming with Java Primer by <u>E Balagurusamy</u>Tmh Publication
- 2. Java; the complete reference, 7th edition, Herbert Scheldt, TMH.
- 3. H. M. Deitel and P. J. Deitel, Java How to Program, Prentice Hall, 7th Edition, 2007

Reference Book:

1. Java2 Programming Black Book, Steven Holzner (no. of copies: 23)

2. C. S. Horstmann and G. Cornell, Core Java 2 (Volume I-Fundamentals), Prentice Hall, 7th Edition, 2004. (no. of copies: 10)

3. Head First Java By Kathy Sierra

Course Code	Course	Course Outcomes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
		CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	3
	OOPS USING	CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	3
CSH201B-T	JAVA	CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	OOPS USING JAVA LAB. (CSH201B-P)											
Course Type	Elective (Departmental)											
L-T-P Structure	0-0-2											
Credits	1											
Pre-requisities	NA											
Course Objective	Student will be able to apply the object-oriented programming principles the real life problems.	and techniques for solving										
Course Outcome	s (COs)	Mapping										
CO1	Demonstrating the syntax using concepts	Employability, Skill Development										
CO2	Demonstrating the interfaces and packages	Employability, Skill Development										
CO3	To analyze the semantics of the given problem statement and illustrate the programming techniques to solve them.	Employability, Skill Development										
CO4	To integrate the learned and applied concepts into given java projects to produce real life solutions.	Employability, Skill Development										

List of Experiments

- Basic programs in java, use of if else construct and switch construct.
- Programs on Loops and Arrays.
- Programs on Strings and classes creation in java.
- Programs on constructors and use of keyword this keyword, static keyword, final keyword, finalize method.
- Programs on single inheritance,
- Programs on multilevel inheritance, Hierarchical inheritance.
- Programs on method overriding, super keyword and final method.
- Programs on interfaces
- Programs on Packages
- Programs Exception Handling
- Programs on threads
- Programs on File Handling
- Programs on Applets
- Programs on AWT

CO-PO Mapping

Course Code	Course	Course Outcomes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
		CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	3
	OOPS USING	CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	3
CSH201B-P	JAVA	CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	INTERNET OF THINGS (ECH305B- T)	
Course Type	Core (Departmental)	
L-T-P Structure	2-0-0	
Credits	2	
Pre-requisities	NA	
Course Objective	To impart knowledge how to connect devices to network.	
Course Outcom	es (COs)	Mapping
CO1	Describe the fundamentals of IoT and identify the IoT networking components	Employability, Skill Development
CO2	Select IoT protocols and software.	Employability, Skill Development
CO3	Build schematic for IoT solutions	Employability, Skill Development
CO4	Design a simple IoT system made up of sensors, wireless network connection, data analytics and display/actuators, and write the necessary control software.	Employability, Entrepreneurship

SECTION A

FUNDAMENTALS OF IoT: Evolution of Internet of Things – Enabling Technologies – IoT Architectures: oneM2M, IoT World Forum (IoTWF) and Alternative IoT models – Simplified IoT Architecture and Core IoT Functional Stack – Fog, Edge and Cloud in IoT – Functional blocks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connecting Smart Objects

SECTION B

IoT PROTOCOLS: IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4g, 802.15.4g, 1 01.2a, 802.11ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained Networks – Optimizing IP for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks – Application Transport Methods: – Application Layer Protocols: CoAP and MQTT

SECTION C

DESIGN AND DEVELOPMENT: Design Methodology – Embedded computing logic – Microcontroller, System on Chips – IoT system building blocks – Arduino – Board details, IDE programming – Raspberry Pi – Interfaces and Raspberry Pi with Python Programming.

SECTION D

DATA ANALYTICS AND SUPPORTING SERVICES: Structured Vs Unstructured Data and Data in Motion Vs Data in Rest – Role of Machine Learning – NoSQL Databases – Hadoop Ecosystem – Apache Kafka, Apache Spark – Edge Streaming Analytics and Network Analytics – Xively Cloud for IoT, Python Web Application Framework – Django – AWS for IoT – System Management with NETCONF-YANG

Textbooks:

1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017

References:

- 1. Arshdeep Bahga, Vijay Madisetti, -Internet of Things A hands-on approach, Universities Press, 2015
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things Key applications and Protocols, Wiley, 2012 (for Unit 2)
- 3. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence", Elsevier, 2014.
- 4. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Things, Springer, 2011.
- 5. Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, 'Reilly Media, 2011

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO 12	PSO 1	PS O2
ЕСН305В- Т		CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	3
	INTERNET	CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	3
	OF THINGS	CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	INTERNET OF THINGS LAB (ECH305B- P)	
Course Type	Core (Departmental)	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisitie s	NA	
Course Objective	To impart knowledge how to connect devices to network.	
Course Outcom	es (COs)	Mapping
CO1	To interface sensors and actuators with both platforms, enabling them to build basic electronic systems.	Employability, Skill Development, Entrepreneurship
CO3	Demonstrate the ability to send sensor data to online platforms like ThingSpeak, paving the way for IoT applications.	Employability, Skill Development, Entrepreneurship
CO4	Apply their knowledge to real-world projects, such as interfacing RFID modules with Arduino and transmitting data to online platforms like ThingSpeak, and solve practical problems using embedded systems technologies	Employability, Skill Development, Entrepreneurship

LIST OF EXPERIMENTS

- Understanding Arduino IDE environment and blinking on-board LED.
- Temperature Sensor interfacing with Arduino and displaying the output on LCD.
- Arduino interfacing with Wi-Fi module ESP8266 for sending data on Thing Speak.
- Arduino interfacing with Wi-Fi module ESP8266 for sending temperature and humidity data on Thing Speak
- Arduino interfacing with RFID module to send data on Thing Speak.
- To perform LED blinking using Raspberry-Pi.
- To perform push-button interfacing using Raspberry-Pi.
- To send data over Thing Speak using Raspberry-Pi.
- To interface 7 segment display with Raspberry-Pi.
- To interface LCD with Raspberry-Pi.

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH305B- P		CO1	3	3	3	-	3	-	-	-	3	3	3	3	3	3
	INTERNET OF THINGS LAB	CO2	3	3	3	-	3	-	-	-	3	3	3	3	3	3
		CO3	3	3	3	-	3	-	-	-	3	3	3	3	3	3
		CO4	3	3	3	-	3	-	-	-	3	3	3	3	3	3

Course name/ code	PROTOTYPING IOT BASED AFFORDABLE HEALTHCARE SYSTEMS	(ECH327B-T)
Course Type	Elective (Departmental)	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisities	NA	
Course Objective	Student will be able design and build prototypes of healthcare instruments	
Course Outcomes (C	COs)	Mapping
CO1	Analyze the requirements and applications of IOT in healthcare.	Employability
CO2	Design prototypes of wireless and wearable devices for healthcare diagnosis and care.	Employability

SECTION A - Introduction to IoT

Basics of IoT and Communication Technologies, Uses of IoT – Smart Cities, Smart Living, Smart Energy, Smart Learning, and Smart Health, Wireless Communication Standards – ZigBee, Bluetooth, and WiFi. Challenges of using IoT in Healthcare, Uses of IoT in Healthcare Systems – Patient monitoring & diagnostics, home healthcare, personal health care, and fitness

SECTION B - Wearable Health Monitoring System (WHMS)

Basics of Wearable Health Monitoring System (WHMS), Need for Wearable Systems, Applications of WHMS - Soldiers, Astronauts, SIDS, Home Healthcare, Sports/Fitness, Disaster, COVID, Haptics, and more. Design of Wearable Computer - Introduction, Architecture, and Attributes. Design of Smart Textiles, Wearable Electronics, Dry Electrodes, and Textile Electrodes. Issues of WHMS & Factors Inhibiting Growth

SECTION C - IoT Architecture and Protocols

Networking Architectures, OSI and TCP/IP, Protocols and Standardization for IoT - M2M, RFID, SCADA, and BACNet, Basic Client-Server Communication Model, Network Sockets, Ports, IP and APIs, Sensor Interfaces – ECG, EEG, PPG, Pulse Oximeter, Temperature Sensors, and Pressure Sensors, Raspberry Pi and Python Programming

SECTION D: Basics of Wireless Sensor Networks and Applications

Wireless Body Area Network (WBAN, WBAN Architecture and Topology. Routing Protocols and Security

Energy Harvesting, OMT in Healthcare Introduction and Architecture, Wearable IoMT, Data Handling, Analysis, and Cloud Computing

E-resources:

- 1. <u>https://www.frontiersin.org/articles/10.3389/frcmn.2020.610879/full</u>
- 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279202/
- 3. <u>https://www.mdpi.com/2227-9032/10/10/1993</u>

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	P S O 2
	PROTOTYPI NG IOT BASED	CO1	3	3	3	3	-	-	-	-	3	3	3	3	3	3
ECH327B-1	HEALTHCA RE SYSTEMS.	CO2	3	3	3	3	-	-	-	-	3	3	3	3	3	3

Course name/ code	PROTOTYPING IOT BASED AFFORDABLE HEALTHCARE SYSTEMS I (ECH327B-P)	LAB
Course Type	Elective (Departmental)	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	Student will be able design and build prototypes of healthcare instruments	
Course Outcomes	(COs)	Mapping
CO1	Demonstrate the protocol requirements of IOT in healthcare.	Employability
CO2	Students will be able to design prototypes of wireless and wearable devices for healthcare diagnosis and care.	Employability

Lab: Prototyping projects

- To develop a Prototype of low cost portable ECG machine.
- To develop a Prototype of low cost BP monitoring machine.
- To develop a Prototype of low cost portable ventilator.
- To develop a Prototype of low cost portable Eye care machine for disease diagnosis.
- To analyze EEG signals generated due to various actions of body.

E-resources:

https://www.frontiersin.org/articles/10.3389/frcmn.2020.610879/full

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	P S O 2
	PROTOTYP ING IOT BASED	CO1	3	3	3	3	3	-	-	-	3	3	3	3	3	3
ECH32/B-P	HEALTHCA RE SYSTEMS.	CO2	3	3	3	3	3	-	-	-	3	3	3	3	3	3

Course Title/Code	ARTIFICIAL INTELLIGENCE (CSH310B-T)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	The student will be able to solve computationally complex proble techniques.	ms using artificial intelligence
Course Outcomes (COs)	Mapping
CO1	Analyze the need and foundation of Artificial Intelligence and expert systems	Employability, Skill Development
CO2	Apply searching algorithms.	Employability, Skill Development
СОЗ	Apply techniques of representing knowledge & reasoning.	Employability, Skill Development
CO4	Analyze the role of AI techniques in applications and current trends of AI.	Employability, Skill Development

SECTION-A

Intelligent agents and AI Problems: Introduction to AI, Foundation and History of AI, Turing Test, Intelligent Agents: Architectures, Types: reactive, deliberative, goal-driven, utility-driven, and learning agents, Applications and Current Trends of AI. Problem Representation in AI, State Space Representation and Problem Reduction, Production Systems: Inference Engine, Working Memory, Knowledgebase and Control Strategy using Water Jug Problem and n-Queens Problem.

SECTION-B

Search Strategies and Knowledge Representation: Search Strategies: Uninformed Search Strategies, Informed Search strategies (Heuristic Search): Generate and Test, Hill Climbing, Best First Search, A*algorithm, AO*Algorithm, Constraint Satisfaction, Means End Analysis. Game Playing: Minmax Strategy, Alpha-beta Pruning.Introduction to Knowledge, Types of Knowledge, Issues in Knowledge Representation, Approaches to Knowledge Representation: Logic, Semantic Nets, Partitioned Semantic Nets, Frames and its types, Conceptual Dependency.

SECTION-C

Reasoning, Planning and Learning: Logical agents: Propositional logic, Inferences, First-order Predicate Logic, Inferences in First-order Predicate Logic, Forward Chaining, Backward chaining, Unification, Resolution. Reasoning under Uncertainty: Monotonic and Non-Monotonic Reasoning, Statistical Reasoning: Review of probability: Axioms of probability, Probabilistic inference, Probabilistic Reasoning(Bayes Theorem), Bayesian Networks, Inferences in Bayesian networks, Temporal and Spatial Reasoning, Dempster-Shafer Theory, Fuzzy Reasoning, Hidden Markov models. Planning with state-space search, partial-order planning, planning graphs. Learning from observation, Inductive learning, Decision trees, Explanation based learning, Statistical Learning methods,

Machine Learning and its types: Supervised, Unsupervised and Reinforcement Learning, Natural Language Understanding, Overview of Natural Language Understanding and Deep Learning.

SECTION-D

Advanced Topics and Applications of AI: Expert Systems: Architecture, Characteristics, Types, Advantages and Drawbacks, Knowledge Acquisition Principles, Study of MYCIN and DENDRAL, Overview of Knowledge Discovery from Databases, Web Intelligence, Robotics.Semantic Webs, Natural Language Processing, Neural Networks, Genetic Algorithms, Big Data, Speech Processing.

Text Books:

- 1. Artificial Intelligence, Elaine Rich, Kevin Knight, Shivashankar B. Nair, Third Edition, TMH.
- 2. S. Russel and P. Norvig, "Artificial Intelligence A Modern Approach", Pearson Education.

Reference Books:

1. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem

solving", Pearson Education.

2. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers, 1998

3. Simon Haykin, "Neural Networks", Pearson Education, Second Edition.

4. Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", Eastern Economy Edition,

PHI

CO-PO MAPPING

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	3	3	-	-	-	-	3	3	-	3	3	3
	ARTIFICIAL	CO2	3	3	3	3	-	-	-	-	3	3	-	3	3	3
CSH310B-1	INTELLIGENCE	CO3	3	3	3	3	-	-	-	-	3	3	-	3	3	3
		CO4	3	3	3	3	-	-	-	-	3	3	-	3	3	3

Course Title/Code	ARTIFICIAL INTELLIGENCE LAB (CSH310B-P)	
Course Type	Elective	
L-T-P Structure	(0-0-2)	
Credits	1	
Pre-requisities	NA	
Course Objective	The student will be able to solve computationally complex problems using techniques.	artificial intelligence
Course Outcome	es (COs)	Mapping
CO1	Demonstrate the understanding of problem solving, knowledge and reasoning in AI	Employability, Skill Development, Entrepreneurship
CO2	Apply real life problems in a state space representation so as to solve them using AI techniques like searching and game playing	Employability, Skill Development, Entrepreneurship
СОЗ	Formulate valid solutions for problems involving uncertain inputs or outcomes by using decision making techniques.	Employability, Skill Development, Entrepreneurship
CO4	Examine the issues involved in knowledge bases, reasoning systems and planning.	Employability, Skill Development

List of experiments

- Write a python program to implement Breadth First Search Traversal?
- Write a python program to implement a Water Jug Problem?
- Write a python program to remove punctuations from the given string?
- Write a python program to sort the sentence in alphabetical order?
- Write a program to implement Hangman games using python.
- Write a program to implement the Tic-Tac-Toe game using python.
- Write a python program to remove stop words for a given passage from a text file using NLTK?
- Write a python program to implement stemming for a given sentence using NLTK?
- Write a python program to POS (Parts of Speech) tagging for the give sentence using NLTK?
- Write a python program to implement Lemmatization using NLTK?
- Write a python program to for Text Classification for the give sentence using NLTK

CO-PO MAPPING

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	3	3	3	3	3	-	-	-	3	3	3	3	3	3
CSH210D D	ARTIFICIAL	CO2	3	3	3	3	3	-	-	-	3	3	3	3	3	3
CSH510B-F	E	CO3	3	3	3	3	3	-	-	-	3	3	3	3	3	3
		CO4	3	3	3	3	3	-	-	-	3	3	3	3	3	3

Course Title/Code	BASICS OF ECONOMICS (MCS231)	
Course Type	Open Elective (Allied)	
L-T-P Structure	1-1-0	
Credits	2	
Pre-requisities	NA	
Course Objective	Students will analyze the performance and functioning of government, may context of social and economic problems	rkets and institutions in the
Course Outcome	es (COs)	Mapping
CO1	Describe the concept with definitions of Economics and the laws of utilities associated with it	Employability, Skill Development
CO2	Analyze the concept for demand and supply and the laws governing the elasticity of demand and supply.	Employability, Skill Development
CO3	Identify the factors affecting the production and differentiate between the various types of costs involved in the factory environment.	Employability, Skill Development
CO4	Analyze the different types of markets and apply the features of markets to understand the role of supply and demand.	Employability, Skill Development

SECTION-A

Definition of Economics - various definitions, Nature of Economic problem, Production possibility curve, Concepts and measurement of utility, Law of Diminishing Marginal Utility, Law of equi-marginal utility - its practical application and importance.

SECTION-B

Meaning of Demand, Individual and Market demand schedule, Law of demand, shape of demand curve, Elasticity of demand, degrees of Price elasticity of demand, factors effecting elasticity of demand, practical importance & applications of the concept of elasticity of demand.

SECTION-C

Meaning of production and factors of production, laws of production, various concepts of cost - Fixed cost, variable cost, average cost, marginal cost, money cost, real cost and opportunity cost. Shape of short run cost curves.

SECTION-D

Meaning of Market, Types of Market -Perfect Competition, Monopoly, Oligopoly, Monopolistic Competition (Main features of these markets). Supply and Law of Supply, Role of Demand & Supply in Price Determination and effect of changes in demand and supply on prices.

TEXT BOOKS:

- 1. Principles of Economics: P.N. Chopra (Kalyani Publishers).
- 2. Economics for Engineers- T R Jain & O P Khanna
- 3. Micro Economic Theory M.L. Jhingan (S.Chand).
- 4. Micro Economic Theory H.L. Ahuja (S.Chand).
- 5. Modern Micro Economics: S.K. Mishra (Pragati Publications).
- 6. Economic Theory A.B.N. Kulkarni & A.B. Kalkundrikar (R.Chand & Co.).
- 7. Indian Economy: Rudar Dutt & K.P.M. Sundhram

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		CO1	-	-	-	-	-	3	-	-	3	3	-	-	-	-
	BASICS OF	CO2	-	-	-	-	-	3	-	-	3	3	-	-	-	-
MCS231	ECONOMICS	CO3	-	-	-	-	-	3	-	-	3	3	-	-	-	-
		CO4	-	-	-	-	-	3	-	-	3	3	-	-	-	-

Course Title/Code	FUNDAMENTALS OF FINANCE (MCS232)	
Course Type	Elective (Allied)	
L-T-P Structure	1-1-0	
Credits	2	
Pre-requisities	NA	
Course Objective	To Provide an in-depth view of the process in financial management	t of the firm
Course Outcomes	(COs)	Mapping
CO1	Describe the fundamental concepts of Financial Management and Financial system.	Employability, Skill Development
CO2	Analyze the Financial statements and apply the knowledge in decision making.	Employability, Skill Development
CO3	Identify the sources for raising capital in Business(s) and analyze.	Employability, Skill Development
CO4	Identify different techniques of capital budgeting.	Employability, Skill Development

SECTION-A

Introduction to Finance; Forms of Business Organization; Overview to financial statements , Balance Sheet, Profit and Loss Account , Cash Flow Statement

SECTION-B

Financial Analysis and Planning; Financial Ratios, Break Even Analysis Sources of Long term Finance – Equity Capital, Preference Capital, Terms Loans, Debentures; Raising Long term Finance.

SECTION-C

Time Value of Money, Capital Budgeting- Techniques of Capital Budgeting, Net Present Value and Payback Period; Capital Structure and Cost of Capital.

SECTION-D

Working Capital: Introduction, Components of Current Assets and Current Liabilities, Operating Cycle, Estimation of Working Capital; Operating Income, Earning Before Interest and Tax (EBIT).

Suggested Readings:

- 1. Pandy, I.M., Financial Management, Vikas Publishing House, New Delhi
- 2. Khan M.Y, and Jain P.K., Financial Management, Tata McGraw Hill, New Delhi
- 3. Keown, Arthur J., Martin, John D., Petty, J. William and Scott, David F, Financial Management, Pearson Education
- 4. Chandra, Prasanna, Financial Management, TMH, New Delhi

- 5. Van Horne, James C., Financial Management and Policy, Prentice Hall of India
- 6. Brigham & Houston, Fundamentals of Financial Management, Thomson Learning, Bombay.
- 7. Kishore, R., Financial Management, Taxman's Publishing House, New Delhi

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
	FUNDAMENT	CO1	-	-	-	-	-	3	-	-	3	3	-	-	-	-
		CO2	-	-	-	-	-	3	-	-	3	3	-	-	-	-
MC5232	ALS OF FINANCE	CO3	-	-	-	-	-	3	-	-	3	3	-	-	-	-
		CO4	-	-	-	-	-	3	-	-	3	3	-	-	-	-

Course name/ code	PROFESSIONAL COMPETENCY ENHANCEMENT-III (CDO301)	
Course Type	Core (Allied)	
L-T-P Structure	4-0-0	
Credits	1	
Pre-requisite s	NA	
Course Objective	To improve students basic knowledge about Arithmetic Aptitude and make stude problems quickly utilizing the short cuts and develop ability to 'quickly think on t strengthen the communication skills	nts solve aptitude their feet and
Course Outcon	nes (COs)	Mapping
CO1	To improve student's basic knowledge about Arithmetic Aptitude	Employability
CO2	Solve aptitude problems quickly utilizing the short cuts, quick thinking and good communication skills	Employability

SECTION A - Quantitative Aptitude

- Unit 1: Arithmetic I
- .1 Simplification
- 1.1.1 Use of BODMAS rule and Formulas for solving equations.
- 1.1.2 Simple Fractions and Decimal Fractions.
- 1.1.3 Surds and Indices.
- 1.2 Ratio and Proportion
- 1.2.1 Changes in Ratios, Combined Ratio and Continued Proportion.
- 1.2.2 Application in different questions.
- 1.2.3 Variations and Partnership.
- 1.3 Percentage
- 1.3.1 Basic Conversion, Consumption & Expenditure, Successive changes and Errors.
- 1.3.2 Application in Areas and Volumes.
- 1.4 Profit and Loss
- 1.4.1 Sales and Purchase Transactions.

- 1.4.2 MRP and Discount, Equivalent discounts.
- 1.4.3 Errors in weight (Dishonest Dealer).
- 1.5 Average
- 1.5.1 Combined and Mistaken Averages.
- 1.5.2 Changes in Average.
- 1.5.3 Application in Cricket and others.
- 1.5.4 Practice Exercise.
- 1.6 Interest
- 1.6.1 Simple and Compound Interest Formulae.
- 1.6.2 Relations and their Applications.
- 1.6.3 Practice Exercise.
- Unit 2: Arithmetic II
- 2.1 Time and work
- 2.1.1 Combined work, Work & Wages, Work & Efficiency.
- 2.1.2 Working Alternatively, Work and Equations.
- 2.1.3 Pipes and Cisterns, Inlet and Outlet pipes, Capacity of Tank and Leakage.
- 2.2 Alligations & Mixtures
- 2.2.1 Formula Based
- 2.2.2 Successive Displacement
- 2.2.3 Mixtures
- 2.2.4 Error in Measurement
- 2.2.5 Profit on False Weight
- 2.3 Revision & Practice
- 2.3.1 Problems on Ages & Numbers
- 2.3.2 Calendar
- 2.3.3 Coding & Decoding
- 2.3.4 Data Sufficiency

SECTION B - Verbal Ability Test

- Unit 3. Communication Skills in English
- 1.1 Relevance of Verbal Ability AND PREPARATORY GUIDELINES

- 1.2 Functional Grammar Subject Verb Agreement
- 1.3 Tenses Perfect, Simple , Continuous
- 1.4 Common Errors and rectification
- Unit 4: Word Power Building Skills
- 2.1 Words: Antonyms, Synonyms, Analogies,
- 2.2 Compound words: Homophones, Homonyms, Word Families
- 2.3 Root Word Technique for Prefixes & Suffixes
- 2.4: Word Power: 7 Tips for Learning New Words
- 2.5 Practice Vocabulary Exercises

SECTION C

Unit 5: Writing Skills

- 3.1 Writing: Introduction of Writing Skills, Objectives of enhancing Writing Skills & Types of Writing
- 3.2 Sentences, Phrases, Types of Sentences, Parts of Sentences
- 3.3 Paragraph Writing: Construction, Linkage & Cohesion
- 3.4 Practice Exercises: Writing Skills

SECTION D

Unit 6: Reading Skills

- 4.1 Objectives of Reading, Definition & Types of Reading & Importance of Reading
- 4.2 Reading Techniques: SW3R, Active Reading, Detailed, Speed
- 4.2 Practice Exercises: Short & Medium Passages
- Text Books/Reference Books:
- 1. Quantitative Aptitude : R S Aggarwal, S Chand & Company Pvt Ltd
- 2. Quantitative Aptitude for CAT: Arun Sharma
- 3. Verbal Ability and Reading Comprehension: MVN Enterprises
- Web links:
- http://www.indiabix.com/aptitude/questions-and-answers/

http://www.indiabix.com/non-verbal-reasoning/questions-and-answers

CO-PO MAPPING

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
CDO201	PROFESSIONAL COMPETENCY	CO1	-	-	-	-	-	3	-	-	3	3	-	3	-	-
CD0301	ENHANCEMENT-I II	CO2	-	-	-	-	-	3	-	-	3	3	-	3	-	-

Course Title/Code	ALTAIR WORKSHOP (ECW210B)	
Course Type:	Domain Core (Workshop)	
Course Nature:	Hard	
L-T-P Structure	0-0-2	
credits	1	
Pre-requisites	NA	
Objective	To impart fundamental knowledge and practical abilities in Al programs and solve engineering problems effectively.	tair required utilizing it to build
Course Outcomes	(COs)	Mapping
CO1	To perform math calculations, manipulating, and visualizing data	Employability, Skill Development
CO2	Solve typical engineering related mathematical tasks	Employability

LIST OF EXPERIMENTS:

- INTRODUCTION TO ALTAIR COMPOSE AND ACTIVATE.
- COMMANDS AND DATA TYPES
- COMMANDS FOR MATH AND CURVE FITTING
- MATRICES AND VECTORS
- PLOT ATTRIBUTES AND HANDLE MANAGEMENT
- LOGIC AND LOOPING ANDFUNCTIONS AND DEBUGGING
- STRINGS, FILES AND I/O
- INTERFACING WITH OTHER LANGUAGES AND HIGHER LEVEL COMMANDS
- IMPLEMENTATION OF DIGITAL CIRCUITS
- PROJECT

Cours e Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECW	ALTAIR	CO1	3	-	-		3	-	-	-	-	-	3	3	3	3
210B	WORKSHOP	CO2	3	3	-	3	3	-	-	-	-	-	3	3	3	3

Course name/ code	DIGITAL SYSTEM DESIGN (ECH331B-T)									
Course Type	Domain Core									
L-T-P Structure	3-1-0									
Credits	4									
Pre-requisitie s	Digital electronics									
Course Objective	Students shall be able to analyze the function of combinational and sequential circuits using simulator and synthesis tools. Hence they can design any sort of applications with well verse knowledge of the subject.									
Course Outcom	nes (COs)	Mapping								
CO1	Describe the design units of VHDL and implementation of circuits using different modelling styles.	Employability								
CO2	Implement circuits using Behavioral Modelling, concept of Delays, Dataflow Modelling and the concept of Resolution Function.	Employability								
CO3	Implementation of combinational and sequential circuits using VHDL.	Employability								
CO4	Analysis of FSM and Test bench and Logic of several PLDs.	Employability								

Detailed Syllabus

SECTION A

Introduction: Introduction to Computer-aided design tools for digital systems, Design flow, Hardware Description Languages, VHDL capabilities and basic terminologies. VHDL Fundamentals: Identifiers, Data objects and data types, Operators, Operator overloading, Entity and architecture declaration, Introduction to behavioral, dataflow, structural and mixed modeling.

SECTION B

VHDL Statements: Behavioral Modelling: Process statement, Assignment statements, Delta delay, Wait statement, If statement, Case statement, Null statement, Loop statement, Exit statement, Next statement, Assertion and report statement, Multiple process, Types of delay, Signal drivers and the effect of delays on signal drivers, Dataflow modeling: Conditional signal assignment statement, Selected signal assignment statement, Unaffected value, Block statement, Concurrent assertion statement, Resolution function, Packages and Libraries, Subprograms: Functions, Procedures and Subprogram overloading, Structural Modeling: component declaration and instantiation, generics and configuration.

SECTION C

Combinational & Sequential Circuit Design: VHDL models and simulation of combinational circuits such as half adder, full adder, multiplexers, DE multiplexer, encoders, decoders, code converters, comparators, Implementation of Boolean functions; VHDL models and simulation of sequential circuits: flip flops, shift registers, counters, State diagrams, Implementation of Mealy and Moore FSM using VHDL, Creating test benches.

SECTION D

Design of Microcomputer & Programmable Devices: Basic components of a computer, Architecture and implementation using VHDL, Design of circuits using Programmable logic devices: ROM, PLA, PAL, Other Programmable Logic Devices: GAL, PEEL, CPLD, FPGA

Text Books:

- 1. J Bhasker, A VHDL Primmer, Prentice Hall
- 2. Douglas L Perry, VHDL-IV Edition, TMH
- 3. Reference Books:
- 4. Volnei A Pedroni, Circuit Design with VHDL, PHI
- 5. Charles H Roth, Digital System Design using VHDL, PWS publishing
- 6. Navabi Z, VHDL-Analysis & Modeling of Digital Systems, McGraw Hill
- 7. Brown and Vranesic, Fundamentals of Digital Logic with VHDL Design, TMH
- 8. R P Jain, Modern Digital Electronics, III Edition, TMH

CO-PO MAPPING

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH331B-T	DIGITAL SYSTEM DESIGN	CO1	3	-	-	-	-	-	-	-	-	-	3	3	3	3
		CO2	3	3		3	-	-	-	-	-	-	3	3	3	3
		CO3	3		3	3	-	-	-	-	-	-	3	3	3	3
		CO4	3		3		-	-	-	-	-	-	3	3	3	3

Course name/ code	DIGITAL SYSTEM DESIGN LAB(ECH331B-P)									
Course Type	Domain Core									
L-T-P Structure	0-0-2									
Credits	1									
Pre-requisites	Digital Electronics									
Course Objective	Students shall be able to analyze the function of combinational and sequential circuits using simulator and synthesis tools. Hence they can design any sort of applications with well verse knowledge of the subject.									
Course Outcom	nes (COs)	Mapping								
CO1	Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder.	Employability								
CO2	Analyze the operation of medium complexity standard combinational circuits like the multiplexer, Demultiplexer.	Employability								
CO3	Design complex digital systems such as ALU.	Employability								
CO4	Develop and simulate register-level models of hierarchical digital systems	Employability								

List of Experiments:

- Introduction to Xilinx ISE Foundation tool and synthesize and simulate half adder, full adder and half subtractor using schematic capture.
- To model, simulate and synthesize all digital gates in VHDL.
- To model, simulate and synthesize full adder and full Subtractor using Dataflow Modeling style in VHDL.
- To model and simulate Multiplexer using Dataflow and Behavioral Modeling, Demultiplexer using Structural Modeling style.
- To model and simulate Encoder and Priority Encoder using Dataflow and Behavioral Modeling, Decoder using structural Modeling and verify using Test Bench. To model and simulate Binary to Gray Code converter and BCD to Seven segment using VHDL and verify using Test Bench.
- To model and simulate 3-bit comparator using VHDL and verify using Test Bench.
- To model and simulate all flip flops using VHDL and verify using Test Bench.
- To model and simulate 4-bit register (SIS0, PIPO, shift left and shift right) using VHDL and verify using Test Bench.
- To model and simulate up counter, decade counter and up/down counter using VHDL and verify using Test Bench.
- VHDL synthesis of models in FPGA from lab 3 and 4.
- VHDL modeling and implementation of Project.

CO-PO MAPPING

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH331B-P	DIGITAL SYSTEM DESIGN	CO1	3	-	-	-	-	-	-	-	-	-	3	3	3	3
		CO2	3	3		3	-	-	-	-	-	-	3	3	3	3
		CO3	3	-	3	3	-	-	-	-	-	-	3	3	3	3
		CO4	3	-	3		-	-	-	-	-	-	3	3	3	3

SUBJECT	SUBJECT	PRE-	**OFFE RING DEPART	COURSE TYPE (CORE/ELECTIV E / UNIVERSITY				NO. OF CONT ACT HOUR S PER	NO. OF
CODES		REQUISITE	MENT	COMPULSORY)	L	Т	Р	WEEK	CREDITS
ECH334B-T	AND IMAGE PROCESSING				3	1	0	4	4
ECH334B-P	DIGITAL SIGNAL AND IMAGE PROCESSING LAB	SIGNALS AND SYSTEMS	ECE	CORE	0	0	2	2	1
ECH336B-T	CONTROL SYSTEMS	NA	ECE	CORE	3	1	0	4	4
ECH426B-T	WIRELESS & MOBILE COMMUNICATION				3	1	0	4	4
FCH426B-P	WIRELESS & MOBILE COMMUNICATION	COMMUNICAT	FCF	CORE	0	0	2	2	1
ECH316B-T ECH310B-T ECH419B-T ECH321B-T ECH322B-T	WAVELETS AND MULTIRATE SYSTEMS INTRODUCTION TO NEURAL NETWORK PLC PROGRAMMING AND APPLICATIONS HEALTHCARE SYSTEMS (DESIGN & ANALYSIS) BIOMEDICAL SIGNAL AND IMAGE PROCESSING	NA	ECE	ELECTIVE	2	1	0	3	3
ECH316B-P ECH310B-P	WAVELETS AND MULTIRATE SYSTEMS LAB INTRODUCTION TO NEURAL NETWORK LAB	NA	ECE	ELECTIVE	0	0	2	2	1
	PLC								
---------------	------------------------------	----------------------	--------	----------	----	---	---	----	----
	AND								
ECH419B-P	APPLICATIONS LAB								
	HEALTHCARE								
	SYSTEMS (DESIGN								
ECH321B-P	& ANALYSIS) LAB								
	BIOMEDICAL								
	SIGNAL AND								
	IMAGE								
ECH322B-P	PROCESSING LAB								
LWS323	CYBER LAW								
	LAW RELATING TO				2	0	0	2	2
	INTELLECTUALPRO								
LWS325	PERTY RIGHTS	NA	LAW	ELECTIVE					
	ENVIRONMENTAL		CHEMIS						
CHH137	SCIENCE	NA	TRY	AUDIT	2	0	0	2	0
	PROFESSIONAL								
	COMPETANCY								
CDO302	ENHANCEMENT-IV	NA	CDC	CORE	4	0	0	4	1
		DICELI		TOTAL	19	4	6	29	21
ECH324B-	HARDWARE VERIFICATION	DIGTAL HARDWARE	ECE	CODE	2	1	0		
Т	USING SYSTEM	MODELLING USING	ECE	CORE	3	I	0	4	4
	VERILOO	VERILOG							
EGUDAAD	HARDWARE	DIGTAL HARDWARE							
ЕСН324В- Р	VERIFICATION USING SYSTEM	MODELLING	ECE	CORE	0	0	2	2	1
	VERILOG LAB	VERILOG							

Course Title/Code	INTRODUCTION TO NEURAL NETWORK (ECH310B-T)	
Course Type	Domain Elective	
L-T-P Structure	2-1-0	
Credits	3	
Pre-requisites	NA	
Course Objective	Provide a thorough understanding of the concepts of neural network and Fuz architectures, algorithms, applications from an engineering perspective.	zzy logic
Course Outcom	es (COs)	Mapping
CO1	Describe the elementary concepts of neural networks; categorize different neural network architectures, algorithms, applications and their limitations.	Employability, Skill development
CO2	Comprehend the concepts of feed forward neural networks and appropriate learning rules for each of the architectures	Employability, Skill development
СОЗ	Realize the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory	Employability, Skill development
CO4	Analyze the application of fuzzy logic control to real time systems.	Employability, Skill development

SECTION A

FUNDAMENTALS OF NEURAL NETWORKS: Introduction to Artificial Neural Network – Biological neurons and their artificial models, building blocks of ANN, characteristics of neural networks, McCulloch-Pitts neuron, learning methods, Hebbian learning rules, perceptron learning rule, LMS rule, Hebb net.

SECTION B

NEURAL NETWORK ARCHITECTURES Single layer perceptions – Adaline – Madaline – Multilayer Feedback networks: Hop-Field, Discrete Hop field, Feedforward Networks – Back propagation network, Radial Basis Function Network, Adaptive Resonance Theory

SECTION C

FUNDAMENTALS OF FUZZY LOGIC Crisp set – Vagueness – Uncertainty and Imprecision – Fuzziness – Basic definitions - fuzzy set theory – classical set Vs fuzzy set - properties of fuzzy sets – Fuzzy operation – Fuzzy arithmetic – Fuzzy relation – Fuzzy relational equations – Fuzzy Cartesian product and composition – Non-interactive fuzzy sets – Tolerance equations relations – Fuzzy ordering relations – Fuzzy morphism

SECTION D

FUZZY MODELS AND CONVERSION: Introduction to Fuzzy model- fuzzy logic control – structure of FLC – Fuzzification models - knowledge Base – Rule base - Inference Engine – Fuzzy to Crisp Conversion - Lambda cuts for

fuzzy sets and relations – Defuzzification Methods, Applications of Neural Networks and Fuzzy Logic– in Forecasting – Traveling salesman problem –in Knowledge Extraction, Fuzzy image processing.

Suggested Text / Reference Books:

1. S.N. Sivanandam, S. Sumati ,S.N.Deepa "Introduction to Neural Networks" Tata Mcgraw hill.

2. LawrenceFausett, "Fundamentals of Neural Networks", Pearson Education, New Delhi. 2. Bart Kosho "Neural Networks & Fuzzy systems", Prentice Hall of India.

3. Neural Networks, Fuzzy Logic, and Genetic Algorithms: Synthesis and Applications, S. Rajasekaran and G. A. VijayalakshmiPai, Prentice Hall of India, New Delhi.

4. S.N.Sivanandam, S.Sumathi, S.N.Deepa "Introduction to Fuzzy Logic " Springer publications.

CO-PO Mapping

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH310B-T	INTRODUCTI -ON TO NEURAL NETWORK	CO1	3	3	3	3	-	-	-	-	-	3	3	3	3	3
		CO2	3	3	3	3	-	3	-	-	-	3	3	3	3	3
		CO3	3	3	3	3	3	-	-	-	-	3	3	3	3	3
		CO4	3	3	3	3	-	3	-	-	-	3	3	3	3	3

Course Title/Code	INTRODUCTION TO NEURAL NETWORK LAB (ECH310B-P)								
Course Type	Domain Elective								
L-T-P Structure	0-0-2								
Credits	1								
Pre-requisities	NA								
Course Objective	Provide a thorough understanding of the concepts of neural network and Fuzzy logic architectures, algorithms, applications from an engineering perspective.								
Course Outcom	es (COs)	Mapping							
CO1	Select appropriate neural network architectures for a given application (i.e. they shall recognize the class of applications and relate it to specific architectures).	Employability, Skill development							
CO2	Design and implement a neural network simulation (with two modes of operation: learning and processing) using a high-level language	Employability, Skill development							
CO3	Develop models for different applications using fuzzy systems and MATLAB.	Employability, Skill development							
CO4	Analyze the application of fuzzy logic control to real time systems	Employability, Skill development							

List of Experiments:

- Introduction to MATLAB and NN Toolbox.
- Generation of few activation functions that are being used in neural networks.
- Computing and plotting with different neuron models.
- Computing hebbian learning.
- Computing and plotting with multilayer perceptron (MLP) for classification and regression problems.
- Computing with RBF network as classifier (XOR Design)
- Computing with kohonen's net (SOM) for clustering and visualization of data.
- Computing with K-means algorithm for clustering data.
- Hopfield net and designing associative memory.
- Neural net techniques for object or image recognition and biometrics.
- Solving problems on fuzzy sets and operations on fuzzy sets

CO-PO Mapping

Course Code	Course	Course Outcomes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O 2
ECH310B NEU -P FUZ		CO1	3	3	3	3	-	-	-	-	-	3	3	3	3	3
	NEURAL NETWORK AND FUZZY LOGIC	CO2	3	3	3	3	3	3	-	-	-	3	3	3	3	3
		CO3	3	3	3	3	3	-	-	-	-	3	3	3	3	3
		CO4	3	3	3	3	3	3	-	-	-	3	3	3	3	3

Course Title/Code	WAVELETS AND MULTIRATE SYSTEMS (ECH316B-T)								
Course Type	Elective (Departmental)								
L-T-P Structure	2-1-0								
Credits	3								
Pre-requisites	NA								
Course Objective	This course will provide an introduction to the theory of wavelets and its applications in mathematics and signal processing.								
Course Outcomes	(COs)	Mapping							
CO1	Characterize continuous and discrete wavelet transforms	Employability							
CO2	Apply multi resolution analysis	Employability/Sk ill Development							
СОЗ	Identify various wavelets and evaluate their time- frequency resolution properties	Employability							

SECTION A

Continuous wavelet transform: Introduction to C-T wavelets, Definition of CWT, The CWT as a correlation. Constant Q-Factor Filtering Interpolation and time frequency resolution, the CWT as an operator, inverse CWT. Introduction to discrete wavelet transform and orthogonal wavelet decomposition.. Approximation of vectors in nested linear vector spaces, (i) example of approximating vectors in nested subspaces of a finite dimensional linear vector space, (ii) Example of approximating vectors in nested subspaces of an infinite dimensional linear vector space. MRA.(i) Bases for the approximations subspaces and Harr scaling function, (ii) Bases for detailed subspaces and Haar wavelet.

SECTION B

MRA, Ortho normal wavelets and their relationship to filter banks: Introduction to Formal definition of an MRA. Construction of a general orthonormal MRA, (i) scaling function and subspaces, (ii) Implication of dilation equation and orthogonality, a wavelet basis for MRA. (i) Two scale relations for (t), (ii) Basis for the detail subspace (iii) Direct sum decomposition, Digital filtering interpolation (i) Decomposition filters, (ii) reconstruction, the signal. EXAMPLES OF WAVELETS: Examples of orthogonal basis generating wavelets, (i) Daubechies D4 scaling function and wavelet. (ii) band limited wavelets, Interpreting orthonormal MRAs for Discrete time MRA, (iii) Basis functions for DTWT.

SECTION C

Alternative wavelet representations: Introduction to Bi-orthogonal wavelet bases, Filtering relationship for bi-orthogonal filters, Examples of bi-orthogonal scaling functions and wavelets. 2-D wavelets.Non - separable multidimensional wavelets - Non - separable multidimensional wavelets, wavelet packets. Wavelets Transform and Data Compression: Introduction, transform coding, DTWT for image compression (i) Image compression using DTWT and run-length encoding.

SECTION D

Construction of simple wavelets: Introduction to Construction of simple wavelets like Harr and DB1. Other Applications of Wavelet Transforms: Introduction, wavelet de-noising, speckle removal, edge detection and object isolation, Image fusions, Object detection by wavelet transforms of projections.

Text books:

1. Raghuveer M Rao and Ajit S Bopadrikar, "Wavelet transforms: Introduction to theory and applications" Gerald Kaiser, A Friendly Guide to Wavelets, Birkhauser, New York, 1995, Prentice Hall

CO-PO Mapping

Course Code	Course	Course Outcomes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH316B- T	WAVELETS AND MULTIRATE SYSTEMS	CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	3	3	-	-	3	3	3	-	3	3	3
		CO3	3	3	3	3	3	-	-	3	3	3	-	3	3	3

Course Title/Code	WAVELETS AND MULTIRATE SYSTEMS LAB (ECH316B-P)								
Course Type	Elective (Departmental)								
L-T-P Structure	0-0-2								
Credits	1								
Pre-requisites	NA								
Course Objective	This course will provide an introduction to the theory of wavelets and its applications in mathematics and signal processing.								
Course Outcomes	(COs)	Mapping							
CO1	Analyze multirate DSP systems.	Employability							
CO2	Determine coefficients for perfect reproduction filter banks and wavelets.	Employability							
CO3	Choose parameters to take a wavelet transform, and interpret and process the result.	Employability							

LIST OF EXPERIMENTS

- Time frequency analysis of a synthetic signal. Construct the scalogram.
- Extract the components of a signal in different time and frequency bands.
- Use empirical mode decomposition to extract the components of a signal in different time and
- Frequency bands.
- Use variation mode decomposition to extract the components of a signal in different time and
- frequency bands
- Extract the components of the seismic sample signal (provided by the instructor)
- Reconstruct the signals from the components extracted in Ex 2 and Ex 5.
- Minor project.

CO-PO Mapping

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH316B- T	WAVELETS AND MULTIRATE SYSTEM	CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	3	3	-	-	3	3	3	-	3	3	3
		CO3	3	3	3	3	3	-	-	3	3	3	-	3	3	3

Course Title/Code	DIGITAL SIGNAL AND IMAGE PROCESSING (ECH3341	3-T)								
Course Type	Domain core									
L-T-P Structure	3-1-0	3-1-0								
Credits	4									
Pre-requisites	Signals and systems									
Course Objective	To provide an exposure to the specific application areas like image analysis, handwriting recognition, speech processing etc.									
Course Outcomes	(COs)	Mapping								
CO1	Analyze images in the frequency domain using various transforms	Employability, Skill development								
CO2	Analyze images in the frequency domain using various transforms	Employability, Skill development								
CO3	Interpret signal and image segmentation and representation techniques	Employability, Skill development								

SECTION A

Discrete-Time Signal and Discrete-Time System: Introduction to Digital Signal Processing, Sampling and Reconstruction, Standard DT Signals, Concept of Digital Frequency, Representation of DT signal using Standard DT Signals, Signal Manipulations (shifting, reversal, scaling, addition, multiplication). Classification of Discrete-Time Signals, Classification of Discrete-Systems, Linear Convolution formulation for 1-D and 2-D signal (without mathematical proof), Circular Convolution (without mathematical proof), Linear convolution using Circular Convolution. Auto and Cross Correlation formula evaluation, LTI system, Concept of Impulse Response and Step Response, Output of DT system using Time Domain Linear Convolution.

SECTION B

Discrete Fourier Transform: Introduction to DTFT, DFT, Relation between DFT and DTFT, IDFT, Properties of DFT without mathematical proof (Scaling and Linearity, Periodicity, Time Shift and Frequency Shift, Time Reversal, Convolution Property and Parseval's Energy Theorem). DFT computation using DFT properties. Transfer function of DT System in frequency domain using DFT. Linear and Circular Convolution using DFT, Convolution of long sequences, Introduction to 2-D DFT. Fast Fourier Transform: Need of FFT, Radix-2 DIT-FFT algorithm, DIT-FFT Flow graph for N=4 and 8, Inverse FFT algorithm. Spectral Analysis using FFT.

SECTION C

Digital Image Fundamentals: Introduction to Digital Image, Digital Image Processing System, Sampling and Quantization, Representation of Digital Image, Connectivity, Image File Formats: BMP, TIFF and JPEG.

SECTION D

Image Enhancement in Spatial domain: Gray Level Transformations, Zero Memory Point Operations, Histogram Processing, Histogram equalization. Neighborhood Processing, Spatial Filtering, Smoothing and Sharpening Filters,

Median Filter. Image Segmentation: Segmentation based on Discontinuities (point, Line, Edge), Image Edge detection using Robert, Sobel, Previtt masks, Image Edge detection using Laplacian Mask.

Text Books:

- 1. John G. Proakis, Dimitris and G.Manolakis, _Digital Signal Processing: Principles, Algorithms, and Applications' 4th Edition 2007, Pearson Education.
- 2. Rafel C. Gonzalez and Richard E. Woods, _Digital Image Processing', Pearson Education Asia, 3rd Edition, 2009,
- 3. S. Sridhar, _Digital Image Processing', Oxford University Press, Second Edition, 2012.

Reference Books:

- 1. Sanjit Mitra, _Digital Signal Processing: A Computer Based Approach', TataMcGraw Hill, 3rd Edition.
- 2. S. Jayaraman, E. Esakkirajan and T. Veerkumar, _Digital Image Processing' TataMcGraw Hill Education Private Ltd, 2009.
- 3. Anil K. Jain, _Fundamentals and Digital Image Processing', Prentice Hall of India Private Ltd, 3rd Edition.

Course Code	Course	Course Outcomes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH334B-T	DIGITAL SIGNAL AND IMAGE PROCESSING	CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	3	3	-	-	3	3	3	-	3	3	3
		CO3	3	3	3	3	3	-	-	3	3	3	-	3	3	3

Course Title/Code	DIGITAL SIGNAL AND IMAGE PROCESSING LAB (ECH334B-P)	
Course Type	Domain core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	Signals and systems	
Course Objective	To provide an exposure to the specific application areas like image analysis, l speech processing etc.	handwriting recognition,
Course Outcom	es (COs)	Mapping
CO1	Assess the techniques, skills, and modern engineering tools necessary for analysis of different electrical signals and filtering out noise signals in engineering practice	Employability, Skill development
CO2	Design digital filters using various techniques	Employability, Skill development/ Entrepreneurship
CO3	Implement different signal and image processing techniques.	Employability, Skill development

List of Experiments

- Signal generation using MATLAB.
- Analysis of LTI system and Z-transform of signal using MATLAB.
- MATLAB simulation for DFT & IDFT.
- DIT and DIF FFT by MATLAB simulation
- MATLAB Simulation of FIR filters using windows technique (Rectangular, Hamming and Hanning).
- MATLAB simulation of LPF and high pass filter by FIR filter.
- Design of IIR Butterworth filter from filter specification (both programming & and by using FDA tool box).
- Design of IIR low pass Butterworth filter using impulse invariant transformation from filter specification.
- Image read and writes operation using MATLAB.
- Reading an image and display the grayscale, color and B/W image using MATLAB.
- Reading an RGB Image and extract the color components using MATLAB.
- MATLAB Simulation of Image noising using different noise distribution.
- MATLAB Simulation of Image De-noising using Arithmetic mean and median filter.
- MATLAB Simulation of Image De-noising using Order Statistics Filter (Median, Min-Max Filter).

CO-PO MAPPING

Course Code	Course	Course Outcomes	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH334B-P		CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
	DIGITAL SIGNAL AND IMAGE PROCESSING	CO2	3	3	3	3	3	-	-	3	3	3	-	3	3	3
		CO3	3	3	3	3	3	-	-	3	3	3	-	3	3	3

Course Title/Code	CONTROL SYSTEMS (ECH336B-T)	
Course Type	Domain core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisities	NA	
Course Objective	Students will be able to understand, model and analyze a control system un inputs, orders) which limit the achievable control system performance by g and different stability techniques	der various factors (disturbance, raphical, block representation
Course Outcom	es (COs)	Mapping
CO1	Demonstrate the electrical modeling of mechanical systems and various reduction techniques.	Employability, Skill development
CO2	Analyses the time and frequency-domain responses of first and second-order systems to various inputs.	Employability, Skill development
CO3	Apply root locus and frequency domain techniques to design a feedback control system to meet specific performance requirements.	Employability, Skill development
CO4	Synthesize control system models on state space models and express state transition matrix for the calculation of variables.	Employability, Skill development

SECTION A

Control System Modelling: Basic elements of control system – Open loop and closed loop systems, Differential equation–Transfer function models, Modeling of electric systems, Translational and rotational mechanical systems, Block diagram reduction techniques, Signal flow graphs, Feedback control systems- Stability, steady-state accuracy, transient accuracy, disturbance, rejection, insensitivity and robustness. Benefits of Feedback.

SECTION B

Time Response Analysis: Standard test signals, Time response of first order systems to various standard inputs, Impulse and step response analysis of second order systems, Design specifications for second-order systems based on the time-response. Application of initial and final value theorem. Steady state and dynamic errors and error constants. Techniques for stability analysis in time domain: Stability, Routh-Hurwitz criterion, Relative stability, Root Locus technique, Construction of Root Locus, Stability, Dominant poles, Application of Root Locus diagram, Relative stability.

SECTION-C

Frequency Response Analysis: Relationship between Time and Frequency Response, Bode plot, Stability in frequency domain, Minimum and non-minimum phase systems, All-pass systems, Polar plot, Nyquist plot, Nyquist stability criteria. Performance specification in frequency domain. Compensation and their realization in time and frequency domain, Lead, Lag and Lead Lag Compensator.

SECTION-D

Basic Modes of Feedback Control: Proportional, Integral and Derivative PID Controllers. Hardware: Control hardware and their model.State Variable Analysis: Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigenvalues and Stability Analysis. Concept of controllability and observability. Pole-placement by state feedback. Discrete-time systems: Difference Equations. State-space models of linear discrete-time systems.

Text/References:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.
- 3. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- 4. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH304B- T		CO1	3	3	3	3	-	-	-	-	-	-	-	3	3	-
	CONTROL SYSTEMS	CO2	3	3	3	3	-	-	-	-	-	-	-	-	3	-
		CO3	3	3	3	3	-	3	-	-	-	-	-	-	3	-
		CO4	3	3	3	3	-	-	-	-	-	-	-	3	3	-

Course	PLC PROGRAMMING AND APPLICATIONS (ECH419B-T)
Title/Code	

Course Type	Domain Elective	
L-T-P Structure	2-1-0	
Credits	3	
Pre-requisites	NA	
Course Objective	Describe the operation, working, importance of Electronic Sensors, their selection c characterize their various applications in the design of Mechatronics system	eriteria and
Course Outcomes	(COs)	Mapping
CO1	Describe typical components, basic concepts and I/O devices of a PLC	Employability
CO2	Apply the concept of electrical ladder logic, its history, and its relationship to programmed PLC instruction.	Employability
CO3	Design and program PLC circuits for various real time PLC applications.	Employability
CO4	Demonstrate the use of PLC timers and counters for the control of industrial processes	Employability

SECTION A

Introduction; definition & history of the PLC; Principles of Operation; Various Parts of a PLC: CPU & programmer/ monitors; PLC input & output modules; Solid state memory; the processor; I/O modules: Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O specifications, The CPU, Memory design, Memory Types, Programming Devices, Selection of wire types and size, Power supplies. PLC advantage & disadvantage; PLC versus Computers, PLC Application. Programming equipment; proper construction of PLC ladder diagrams; process scanning consideration; PLC operational faults.

SECTION B

The Binary Concept, AND, OR and NOT functions, Boolean Algebra, developing circuits from Boolean Expression expressions, Producing the Boolean equation from given circuit, Hardwired logic versus programmed logic, Programming word level logic instructions. Converting Relay schematics and Boolean equation into PLC Ladder Programs, Writing a ladder logic program directly from a narrative description. Different types of Input devices: Switches: Push button Switches, Toggle Switches, Proximity switches, Photo switches, Temperature Switch, Pressure Switch, and Level Switch, Flow Switches, manually operated switches, Motor starters, Transducers and sensors, Transmitters etc. Their working, specification and interfacing with PLC. Different types of Output devices: Electromagnetic Control Relays, Latching relays, Contactors, Motors, Pumps, Solenoid Valves etc. Their working, specification and interfacing with PLC.

SECTION-C

Processor Memory Organization, Program Scan, PLC Programming languages, Relay type instructions, Instruction addressing, Branch Instructions, Internal Relay Instructions, Programming Examine if Closed and examine If Open instructions, Entering the ladder diagram, Modes of operation. Creating Ladder Diagrams from Process Control Descriptions. Ladder diagram & sequence listing; large process ladder diagram construction, Industrial Examples: Conveyer Belt, Car Parking System, Automatic Door System, Fan On/Off System, Electric Pump and Motor System, Staircase Lightning.

SECTION-D

Mechanical Timing relay, Timer instructions, ON delay timer instruction, Off-Delay timer instruction, Retentive Timer, Cascading Timers, examples of timer function industrial application; industrial process timing application.Counter Instructions, Up-counter, down counter, Up-Down counter, Cascading counters, Incremental encoder counter applications, Combining counter and timer functions, High Speed counter instruction, HSC, PLS, examples of counter function industrial application.

Suggested Text/Reference Books

- 1. Programmable logic controllers by W.Bolton
- 2. Programmable logic controllers by Frank D. Petruzella

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH419B-T		CO1	3	3	3	-	-	-	-	3	3	-	-	3	3	3
	PLC PROGRAMMING AND APPLICATIONS	CO2	3	-	3	-	-	-	-	3	3	-	-	-	-	-
		CO3	3	3	3	3	-	3	-	3	-	-	-	-	-	-
		CO4	3	3	-	3	-	3	-	3	3	3	-	3	3	3

Course Title/Code	PLC PROGRAMMING AND APPLICATIONS (ECH419B-P)	
Course Type	Domain Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	NA	
Course Objective	Describe the operation, working, importance of Electronic Sensors, their sel and characterize their various applications in the design of Mechatronics system	ection criteria
Course Outcomes (C	COs)	Mapping
CO1	Describe the fundamental concepts and typical components of a Programmable Logic Controller.	Employability
CO2	Apply the concepts of electrical ladder logic for basic digital electronics and other related applications	Employability
CO3	Design basic PLC circuits for entry-level PLC applications using timer, counter, and other intermediate programming functions.	Employability

List of Lab Experiments

1. I (Virtual Lab)

Plot the LVDT characteristics.

- 2. Characterize the temperature sensor (Thermocouple)
- 3. Demonstrate BJT CE Amplifier operation and Characteristics.
- 4. Practical Application Based on Logic Gates:

Washing machine control using basic AND & NOT gates

Universal NOR gate and its application in automobile alarm system

- 5. Speed Control of DC Motor
- 6. (PLC IDEC Software)
- 7. PLC control system: Basic ladder logic implementation using IDEC Software (Logic Gates).
- 8. Demonstration of Staircase Lightning System using PLC.
- 9. Demonstration of Bottle Filling System using PLC.
- 10. Demonstration of Automatic Car Parking System using PLC.
- 11. Demonstration of Elevator/Automatic Door System using PLC.
- 12. Virtual Project of Mechatronics on Proteus Platform.

CO-PO MAPPING

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH419B-P	PLC PROGRAMMING AND APPLICATIONS LAB	CO1	3	3	3	-	3	-	-	3	3	-	-	3	3	3
		CO2	3	-	3	-	3	-	-	3	-	-	-	-	-	-
		CO3	3	-	-	-	3	-	-	3	-	-	-	-	-	-

Course Title/Code	HEALTH CARE SYSTEMS (DESIGN AND ANALYSIS) (ECH321B-T)	
Course Type	Domain Elective	
L-T-P Structure	2-1-0	
Credits	3	
Pre-requisites	NA	
Course Objective	Distinguish among structured, object-oriented, and agile systems development methods AN clinical and analytical workflows in an electronic health record	D Perform
Course Outcom	ues (COs)	Mapping
CO1	Demonstrate the applications of knowledge of the requirements, design, and control of major business processes that are integral within a healthcare enterprise system including registration, order entry and result reporting, clinical documentation, scheduling and patient billing.	Employability
CO2	Demonstrate the applications of knowledge systems analysis & design methodologies and techniques including: requirement analysis, development strategies, project management, and system implementation / operation.	Employability
СОЗ	Demonstrate the applications of knowledge of control and audit of healthcare information systems including: controls for privacy and confidentiality, controls for computer crimes (fraud and abuse) and systems reliability (information security, processing integrity, and availability.)	Employability

SECTION-A

HEALTHCARE INFORMATION SYSTEMS DEVELOPMENT OVERVIEW: Healthcare Information Systems, Systems Development Process & Health Care Settings. Strategic Planning for IT Projects

SECTION-B

SYSTEM REQUIREMENTS ANALYSIS: Electronic Health Record, Standard Terminology and Language in Healthcare, Personal Health Record, Health Information Exchanges

SECTION-C

SYSTEM PROPOSAL DESIGN & IMPLEMENTATION: Selecting a Healthcare Information System, Usability of Health Informatics Applications

SECTION-D

SYSTEM MAINTENANCE & SUPPORT: System Maintenance and Support, Information Systems Training, Information Security and Confidentiality, Systems Integration and Interoperability, Legal and Regulatory Issues

CO-PO MAPPING

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH321B-T	HEALTH CARE	CO1	3	3	3	-	-	-	-	3	3	-	-	3	3	3
	SYSTEMS (DESIGN AND ANALYSIS	CO2	3	-	3	-	-	-	-	3	-	-	-	-	-	-
		CO3	3	3	3	-	-	-	-	3	-	-	-	-	-	-

Course Title/Code	HEALTH CARE SYSTEMS (DESIGN AND ANALYSIS) LAB (ECH321B-P)	
Course Type	Domain Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	NA	
Course Objective	Distinguish among structured, object-oriented, and agile systems development meth perform clinical and analytical workflows in an electronic health record	nods and
Course Outcomes	(COs)	Mapping
CO1	Recognize the different types of measures used in outcomes research, including clinical, health status, quality of life, work/role performance, health care utilization, and patient satisfaction	Employability
CO2	Interpret the scale performance and measurement concepts such as reliability, validity, responsiveness, and sensitivity	Employability
СОЗ	Demonstrate the applications of knowledge of control and audit of healthcare information systems including: controls for privacy and confidentiality, controls for computer crimes (fraud and abuse) and systems reliability (information security, processing integrity, and availability.)	Employability

LIST OF EXPERIMENTS

1. Prototyping projects

Course Code	Course	Course Outcom es	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO 10	PO 11	PO 12	PS O1	PS O2
ECH321B-P	HEALTH CARE	CO1	3	3	3	-	3	-	-	3	3	3	-	3	3	3
	SYSTEMS (DESIGN AND ANALYSIS)	CO2	3	3	3	3	3	-	-	3	-	3	-	-	-	-
		СОЗ	3	3	-	-	3	-	-	3	-	3	-	-	-	-

Course Title/Code	BIOMEDICAL SIGNAL AND IMAGE PROCESSING (ECH322	B-T)
Course Type	Domain Elective	
L-T-P Structure	2-1-0	
Credits	3	
Pre-requisites	NA	
Course Objective	To know the fundamental tools that are used to describe, analyze and p	rocess biomedical signals.
Course Outcome	s (COs)	Mapping
CO1	Possess the basic mathematical, scientific and computational skills necessary to analyze ECG and EEG signals.	Employability/Skill Development
CO2	Apply classical and modern filtering and compression techniques for ECG and EEG signals	Employability/Skill Development
CO3	Develop a thorough understanding of basics of ECG and EEG feature extraction.	Employability/Skill Development

SECTION-A

Neurological Signal Processing: The Brain and its potentials; The Electrophysiology origin of brain waves; the EEG Signal and its characteristics; EEG analysis; Linear prediction theory; The autoregressive (AR) method; Transient detection and elimination-the case of epileptic patients. Adaptive Filter and Algorithm: A Review of the Wiener filtering problem; Principle of an adaptive filter; Steepest – descent algorithm; Windrow-hoff least –mean-square adaptive algorithm

SECTION B

Cardiological Signal Processing: Basic electrocardiography; ECG data acquisition; ECG lead system; ECG parameters and their estimation; Use of multi-scale analysis for parameters estimation of ECG waveforms.

SECTION C

Adaptive Noise Canceling: Adaptive noise canceller; Cancellation of 60 Hz interference in electrocardiography, canceling donor heart interference in heart –transplant electrocardiography, cancellation of the electrocardiography signal from the electrical activity of the chest muscles, canceling method to enhance fetal ECG monitoring ECG Recording and Analysis: Long term continuous ECG recording; The wavelet approximation- discrete wavelet series; Discrete wavelet transform (DWT); Multi-resolution analysis; Pyramid algorithm

SECTION D

HRV and Arrhythmia analysis: Heart rate variability-definition; comparison of short-term and long term HRV analysis; Time domain and spectral domain parameters of short-term recording.

Suggested Text/Reference Books

1. Reddy D C. "Modern Biomedical Signal Processing - Principles and Techniques", TMH,

New Delhi, 2005

2. Akay M. "Biomedical Signal Processing", Academic press, California,1994.

3. Tompkins W J "Biomedical Signal Processing", Prentice hall of India, New Delhi, 1999.

4. Bronzino J D "The Biomedical Engineering handbook", CRC and Free press, Florida, 1995.

CO-PO MAPPING

Course Code	Course	Course Outcom es	Р О 1	Р О 2	Р О 3	Р О 4	P O 5	Р О 6	P O 7	Р О 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
ECH322B-T	DIOMEDICA	CO1	3	3	3	-	3	-	-	3	3	3	-	3	3	3
	BIOMEDICA L SIGNAL AND IMAGE	CO2	3	3	3	3	3	-	-	3	-	3	-	-	-	-
	PROCESSING	CO3	3	3	-	-	3	-	-	3	-	3	-	-	-	-

Course Title/Code	BIOMEDICAL SIGNAL AND IMAGE PROCESSING LAB	(ECH322B-P)
Course Type	Domain Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	NA	
Course Objective	To know the fundamental tools that are used to describe, analyze and	process biomedical signals.
Course Outcomes	(COs)	Mapping
CO1	Implement algorithms based on discrete time signals.	Employability/Skill Development
CO2	Apply appropriate signal processing techniques in analyzing various bio signals	Employability/Skill Development
CO3	Design IIR and FIR filters for bio-signal processing.	Employability/Skill Development

LIST OF EXPERIMENTS

- Representation of basic signals
- Linear convolution
- Autocorrelation and cross correlation
- FFT and IFFT
- Difference equation Representation

B.Tech. ECE, Manav Rachna University Page 164

- Digital IIR Butterworth filter-LPF & HPF
- Digital IIR Chebyshev filter-LPF & HPF
- Design of FIR filter using windowing technique
- Up sampling and down sampling
- Analysis of ECG
- Analysis of EEG
- Analysis of PCG

CO-PO MAPPING

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH322B-P	BIOMEDICAL SIGNAL PROCESSING	CO1	3	3	3	-	3	-	-	3	3	3	-	3	3	3
		CO2	3	3	3	3	3	-	-	3	-	3	-	-	-	-
		CO3	3	3	-	-	3	-	-	3	-	3	-	-	-	-

Course Title/Code	CYBER LAW (LWS323)	
Course Type	Elective	
L-T-P Structure	2-0-0	
Credits	2	
Pre-requisities	NA	
Course Objective	The Objective is this paper is to focus on basic concepts of Cyber Law evolution of Cyber law and its conformity in any changing society.	relevant for understanding
Course Outcome	es (COs)	Mapping
CO1	Describe the concept of Cybercrimes and cyber Law	Employability/Skill Development
CO2	Critically analyses the problems arising out of online transactions and find solutions	Employability/Skill Development
CO3	Analyze Intellectual Property issues in the cyber space and apply relevant laws to protect or fight infringement	Employability/Skill Development
CO4	Explain Information Technology Act 2000 and critically analyze various SECTIONs to apply such laws appropriately	Employability/Skill Development

SECTION A

Unit 1: Cyber Crimes: Meaning, Categories & Kinds- (Contact Hours - 4)

A. Cyber Crime: Meaning & Categories -B. Nature of Cyber Crime, Cyber Crimes v. Conventional Crimes-C. Kinds of Cyber Crime- hacking, spamming, phishing, cyber stalking, cyber pornography, malware etc

SECTION B

Unit 2: Privacy Issues & Access Rights: - (Contact Hours -6)

A. Freedom of speech and expression in Cyberspace- B. Right to Privacy and Right to Data Protection. - C. Access Rights

SECTION C

Unit 3: Cyber Space & Legal framework: - (Contact Hours -3)

A. Cyber Security- B. Cyber Space, Concept of Property in Cyber Space-C. Jurisdiction in Cyber Space

SECTION D

Unit 4: Information and Technology Act 2000 & IT Amendment Act 2008 (Contact Hours - 3)

A. Need of Cyber Law in India-B. Enactment & Scheme of the IT Act-C. Objectives of the IT Act 2000, Amendments to the Act-D. Justice Dispensation System for Cyber Crimes under IT Act

Reference Books:

1. Cyber Law - Pavan Duggal

2. Cyber Crimes & Laws-Sushma Arora & Raman Arora-Taxmann's

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
	CYBER LAW	CO1	-	-	-	-	-	-	3	3	-	-	-	3	-	-
LUIGAAA		CO2	-	-	-	-	-	-	3	3	-	-	-	3	-	-
LWS323		CO3	-	-	-	-	-	-	3	3	3	3	-	3	-	-
		CO4	-	-	-	-	-	-	3	3	3	3	-	3	-	-

Course Title/Code	LAW RELATING TO INTELLECTUAL PROPERTY RIGHTS (I	LWS325)
Course Type	Elective	
L-T-P Structure	2-0-0	
Credits	2	
Pre-requisities	NA	
Course Objective	The objective of this paper is to orient students to legal studies. The paper and legal system.	per focuses on generally about
Course Outcome	s (COs)	Mapping
CO1	Describe the basics of Intellectual Property Rights	Skill Development
CO2	Categorize different types of intellectual properties	Employability/Skill Development
CO3	Recognize the crucial role of intellectual property in different industries	Employability/Skill Development
CO4	Explain the procedural aspect pertaining to application and grant of patent, trademark, geographical indication etc	Employability/Skill Development

SECTION A

Introduction to IPRs and Trademark and Trade Secrets (Contact Hours 4)

Introduction to various types of IPR Laws-Protection of Trademarks under Trademarks Act - Basic legal Framework

Trade Secrets and protection thereof

SECTION B

Protection of Copyright, Traditional Knowledge, Design and Integrated Circuits (Contact hours 4)

Legal Framework relating to Copyright protection in India-Protection of Industrial Designs under Designs Act-

Protection of integrated circuits

SECTION C

Law relating to Patents (Contact Hours - 4)

Legal Framework for registration and protection of patents and related rights-

SECTION D

IT Law and Cyber Offences and other IPRs (Contact Hours - 4)

Introduction to Information Technology Act, 2002-Cyber Offences-Geographical Indicators and PPVFBR

Tutorial activities 1 Hr/Week

Statutes and Case Laws-Case studies from India and abroad

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
	LAW RELATI	CO1	-	-	-	-	-	-	3	3	-	-	-	3	-	-
LWS325	NG TO INTELL ECTUA	CO2	-	-	-	-	-	-	3	3	-	-	-	3	-	-
	L PROPE	CO3	-	-	-	-	-	-	3	3	3	3	-	3	-	-
	RIGHT S	CO4	-	-	-	-	-	-	3	3	3	3	-	3	-	-

Course Title/Code	PROFESSIONAL COMPETANCY ENHANCEMENT-IV (CDO302)	
Course Type	CORE	
L-T-P Structure	4-0-0	
Credits	1	
Pre-requisites	NA	
Course Objective	To strengthen students Modern Math concepts To help students perform well during placements To help students get proficient with problem solving at various levels like basic, advanced To help students with shortcuts to problem solving To improve students communication skills to help the engineering student to corr various aspects of environment.	intermediate and relate his field with
Course Outcomes	s (COs)	Mapping
CO1	To strengthen students Modern Math concepts	Skill Development
CO2	To help students perform well during placements	Skill Development
CO3	To help students get proficient with problem solving at various levels like basic, intermediate and advanced	Skill Development
CO4	To help students with shortcuts to problem solving	Skill Development
CO5	To improve student's communication skills	Skill Development

Part A – Quantitative Aptitude

Unit 1: Modern Math

1.1 Permutation and Combination

1.1.1 Principal of counting and basic formulas

1.1.2 Arrangements, Selection and Selection + Arrangement.

1.1.3 Linear/Circular arrangements, Digits and Alphabetic Problems and Applications.

1.2 Probability

1.2.1 Events and Sample Space, Basic Formulas.

1.2.2 Problems on Coins, Cards and Dices.

1.2.3 Conditional Probability, Bayes' Theorem and their Applications.

Unit 2: Advanced Math

Mensuration 1- Areas

B.Tech. ECE, Manav Rachna University Page 169

- 2.1.1 Different types of Triangles and their area and perimeter.
- 2.1.2 Different types of Quadrilateral and their area and perimeter.
- 2.1.3 Circumference and Area of Circle, Area of Sector and length of Sector.
- 2.1.4 Mixed Figures and their Applications.
- 2.2 Mensuration 2- Surface Areas and Volumes
- 2.2.1 Problems on Cubes & Cuboids, Cone, Cylinder and Sphere.
- 2.2.2 Prism and Pyramid.
- 2.2.3 Mixed Figures and their Applications.
- Unit 3: ALGEBRA:
- 3.1 Linear and Quadratic equations.
- 3.2 Inequalities.
- 3.3 Integral Solutions and Max and Min values.
- Part B Soft Skills
- Unit 4: Professional Writing
- 4.1. Profiling on Social Sites: LinkedIn, Facebook, Instagram
- 4.2. Cover Letter/Emails
- 4.3. Resume Writing
- Unit 5: Group Discussions
- 5.1. Do's and Dont's of a Group Discussion
- 5.2. Roles played in a Group Discussion
- 5.3. Tips for Cracking a Group Discussion
- Unit 6: Managing Interviews
- 6.1. Developing the employability mindset
- 6.2. Preparing for Self -Introduction
- 6.3. Researching the employer
- 6.4. Portfolio Management
- 6.5. Answering Questions in an Interview
- Text Books/Reference Books:
- Quantitative Aptitude : R S Aggarwal, S Chand & Company Pvt Ltd
- Quantitative Aptitude for CAT: Arun Sharma

Verbal Ability and Reading Comprehension: MVN Enterprises

Web links:

- 1. <u>http://www.indiabix.com/aptitude/questions-and-answers/</u>
- 2. <u>http://www.indiabix.com/non-verbal-reasoning/questions-and-answers/</u>

Course Code	Course	Course Outcom es	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PS O1	PSO 2
		CO1	-	-	-	3	-	-	3	3	3	3	3	3	-	3
		CO2	-	-	-	3	-	-	3	3	3	3	3	3	-	3
CDO302	PROFESSIONAL COMPETENCY ENHANCEMENT-IV	CO3	-	-	-	3	-	3	3	3	3	3	3	3	-	3
	ENHANCEMENT-IV	CO4	-	-	-	3	-	-	3	3	3	3	3	3	-	3
		CO5	-	-	-	3	-	-	3	3	3	3	3	3	-	3

Course Title/Code	HARDWARE VERIFICATION USING SYSTEM VERILOG (ECH32	4B-T)
Course Type	CORE	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisites	NA	
Course Objective	Appreciate and apply the System Verilog verification features, including classimulus, coverage, strings, queues and dynamic arrays, and learn how to u effective and efficient verification.	asses, constrained random tilize these features for more
Course Outcom	es (COs)	Mapping
CO1	Use System Verilog RTL design and synthesis features, including new data types, literals, procedural blocks, statements, and operators, relaxation of Verilog language rules.	Employability/Skill Development
CO2	Analyze synthesis issues, enhancements to tasks and functions, new hierarchy and connectivity features, and interfaces.	Employability/Skill Development
CO3	Appreciate and apply the System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays.	Employability/Skill Development
CO4	Utilize the features of system Verilog for more effective and efficient verification.	Employability/Skill Development

SECTION A

Introduction: Introduction to System Verilog: What is system verilog? Features of SV, Event regions in SV; Data Types: 4-State type, 2-State type, Real, Arrays, Packed, Unpacked, Dynamic Array, Queue, Associative Array, Array query function, Array ordering method, User define data type, Structure and Union (Basic), String (Basic), Enumeration, Const, Casting, static and dynamic.

SECTION B

Data Classes, Statements & Subprograms: Verilog operator overview, System verilog operators, Arithmetic, increment/decrement, bitwise, shift, wildcard equality, inside Verilog loops overview for each, do while loop, Package, `include and import, Scope and Lifetime, Parameter, Function, Task. Introduction to class: Object Constructor, Parametrized class, This Lifetime in class, Function and task in class, Features of OOP, Encapsulation, local, protected, Inheritance, super, Static members in class. Polymorphism, Virtual method, Abstraction, Virtual class, Singleton class, Shallow copy, Deep copy.

SECTION C

Semaphore, Mailbox & Randomization: What is semaphore? Semaphore methods, what is mailbox? Mailbox methods, Parametrized mailbox, Bounded, unbounded mailbox; Why randomize? Verilog constraint randomization, SV

constraint randomization, random, randomize (), Rand vs Randc, Pre and post randomize, Controlling randomization, Relational operator in constraint, Bidirectional constraint, Inside, Implication constraint, Inline constraint, Constraint in inheritance.

SECTION D

Processes, Coverage & Assertion: Final block, Block statement, Fork join, fork join any, fork join none, Wait and disable, what is event? Conditional event control, named event, Event triggering, Blocking and non-blocking, what is program block? Re-active region, what is Interface? Modport, Parameterized interface, Virtual interface, what is coverage? Code coverage, Functional coverage, Cover group, Cover point, Embedded cover group, Bins, types of bins, bins for transition, wildcard, illegal bins, ignore bins, cross-coverage, coverage option, What is assertion? Immediate and concurrent, Assertion severity, Property blocks and sequences, Assertion operator (Basic).

Course Code	Course	Course Outcom es	P O 1	P O 2	Р О 3	P O 4	P O 5	Р О 6	P O 7	P O 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
		CO1	3	3	3	3	-	-	-	-	-	3	3	3	3	3
ECH324B -T	HARDWARE VERIFICATION	CO2	3	3	3	3	-	3	-	-	-	3	3	3	3	3
	SYSTEM VERILOG	CO3	3	3	3	3	-	-	-	-	-	3	3	3	3	3
		CO4	3	3	3	3	-	-	-	-	-	3	3	3	3	3

Course Title/Code	HARDWARE VERIFICATION USING SYSTEM VERILOG (ECH32	24B-P)					
Course Type	CORE						
L-T-P Structure	0-0-2						
Credits	1						
Pre-requisites	NA						
Course Objective	Appreciate and apply the System Verilog verification features, including cl stimulus, coverage, strings, queues and dynamic arrays, and learn how to u effective and efficient verification.	asses, constrained random tilize these features for more					
Course Outcom	es (COs)	Mapping					
CO1	Apply System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.	Employability/Skill Development					
CO2	Synthesis features, including new data types, literals, procedural blocks, statements, and operators, relaxation of Verilog language rules, fixes for synthesis issues, enhancements to tasks and functions, new hierarchy and connectivity features, and interfaces.Employability/Skill Development						

List of Experiments:

- Design and verify combinational circuits using System Verilog.
- Design and verify D Flip-Flop using System Verilog.
- Design and verify Sequential circuits using System Verilog.
- Example of a simple UVM testbench consisting of a single uvm_env class.
- Basic UVM "Hello World" program using System Verilog.
- Create multiple objects of a class, calling the constructor and a print method using System Verilog.
- Example of Random-Access Memory using System Verilog.
- Example of testing a UVM scoreboard using SVUnit.
- Projects

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH234B- P	HARDWARE VERIFICATION	CO1	3	3	3	3	3	-	-	-	-	3	3	3	3	3
	USING SYSTEM VERILOG LAB	CO2	3	3	3	3	3	3	-	-	-	3	3	3	3	3

Course Title/Code	WIRELESS AND MOBILE COMMUNICATION (ECH426B-T)	
Course Type	Domain core	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisites	NA	
Course Objective	Provide understanding of advanced multiple access techniques, Mobile rad modulation techniques	io Propagation Models and
Course Outcom	es (COs)	Mapping
CO1	Comprehend various standards, technologies and architecture used in Analog and Digital Mobile Radio systems.	Employability, Skill development
CO2	Describe various mechanisms of propagation and fading in mobile radio channels and their impact on designing the radio systems.	Employability, Skill development
CO3	Comprehend various concepts of equalization and diversity techniques and their applications in designing the mobile radio systems.	Employability, Skill development
CO4	Appreciate the system design concept in wireless radio systems and their applications in wireless communication.	Employability, Skill development

SECTION A: CELLULAR CONCEPTS AND SYSTEM DESIGN FUNDAMENTALS

Cellular concept and frequency reuse, Multiple Access Schemes, channel assignment and handoff, Interference and system capacity, Trunking and Erlang capacity calculations.

SECTION B: MOBILE RADIO PROPAGATION MODELS

Radio wave propagation issues in personal wireless systems, Propagation models, Multipath fading and Base band impulse response models, parameters of mobile multipath channels, Antenna systems in mobile radio.

SECTION C: MODULATION TECHNIQUES

Overview analog and digital modulation techniques, Performance of various modulation techniques-Spectral efficiency, Error-rate, Power Amplification, Equalizing Rake receiver concepts, Diversity and space-time processing, Speech coding and channel coding.

SECTION D: SYSTEM EXAMPLES AND DESIGN ISSUES

Multiple Access Techniques-FDMA, TDMA and CDMA systems, operational systems, Wireless networking, design issues in per-sonal wireless systems

TEXT BOOKS

- 1. S. Rappaport, Wireless digital communications; Principles and practice, Prentice Hall, NJ, 1996.
- 2. Schiller, Mobile Communications; Pearson Education Asia Ltd., 2000.

REFERENCE BOOKS

- 1. Feher, Wireless digital communications, PHI, New Delhi, 1999.
- 2. C. Y. Lee, Mobile communications engineering: Theory and Applications, Second Edition, McGraw Hill, New York.1998.

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
	WIRELESS AND MOBILE COMMUNICATION	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
FOUND		CO2	3	3	3	-	-	-	-	-	-	-	-	3	3	3
ЕСН426В- Т		CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	WIRELESS AND MOBILE COMMUNICATION LAB (ECH426)	3-P)
Course Type	Domain core	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	NA	
Course Objective	Provide understanding of advanced multiple access techniques, Mobile and modulation techniques	e radio Propagation Models
Course Outcomes	(COs)	Mapping
CO1	Develop ad-hoc network applications using appropriate algorithms/protocols.	Employability, Skill development
CO2	Develop ad-hoc network applications using appropriate algorithms/protocols.	Employability, Skill development
CO3	Identify and simulate the medium access control mechanisms suitable for given applications.	Employability, Skill development

List of Experiments

1. Evaluate the impact of path loss and shadowing in estimation of received signal power in mobile

cellular communication using fading channel mobile communication virtual lab.

2. Calculate the boundary coverage probability in a cellular system using fading channel mobile

communication virtual lab.

3. Demonstrate the impact the received power levels for hand-off in case of mobile cellular

communication using fading channel mobile communication virtual lab.

4. Estimate the impact of sectoring in increasing cellular system capacity using fading channel mobile

communication virtual lab.

5. Examine the impact of co-channel interference on the value of SIR in mobile cellular

communication using fading channel mobile communication virtual lab.

6. Setting up of LTE 2x2 MIMO system for establishing two way communication.

7. Study of pure ALOHA and slotted ALOHA protocols for WLAN System.

8. Configure ZigBee module as an end device and, set up a communication link with two ZigBee

modules.

9. Study of RFID system and its applications.

CO-PO MAPPING

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ЕСН426В- Р	WIRELESS AND MOBILE COMMUNICA TION	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	PLC PROGRAMMING AND APPLICATIONS LAB (ECH419B-	Р)
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisites	NA	
Course Objective	Describe the operation, working, importance of Electronic Sensors, the characterize their various applications in the design of Mechatronics sy	eir selection criteria and stem
Course Outcomes	(COs)	Mapping
CO1	Identify fundamental components of a PLC and perform ladder logic programming for basic applications.	Employability, Skill development
CO2	Design PLC circuits for entry-level PLC applications using timer, counter, and other intermediate programming functions.	Employability, Skill development
CO3	Design application based PLC system based on gained knowledge.	Employability, Skill development

List of Experiments

- 1. Familiarization with AO-IDEC software and realizing logic gates using ladder logic programming.
- 2. Conveyor Belt System using ladder logic programming.
- 3. Design a two way staircase Light using ladder logic programming.
- 4. Latching and Unlatching
- 5. To study the operation of different types of timers.
- 6. Working of different types of Counters.

- 7. Interlock Control Circuit- Car Parking
- 8. SET/RST Application
- 9. Traffic lights indication
- 10. Automatic indication of water tank level

CO-PO MAPPING

Course Code	Course	Course Outcome s	P O1	P O2	P O3	P O4	P O5	P O6	P O7	P O8	Р О9	PO1 0	PO1 1	PO1 2	PSO 1	PS O2
ECH419B- P	PLC PROGRAMMIN G AND	CO1	3	3	3	-	3	-	-		3	3	3	3	3	3
		CO2	3	3	3	-	3	-	-		3	3	3	3	3	3
	LAB	CO3	3	3	3	-	3	-	-		3	3	3	3	3	3

SEMESTER VII

SUBJECT CODES	SUBJECT NAME	PRE- REQUI SITE	**OFFERI NG DEPARTM ENT	COURSE TYPE (CORE/ELEC TIVE / UNIVERSIT Y COMPULSO RY)	L	т	Ρ	NO. OF CONTACT HOURS PER WEEK	NO. OF CREDITS
	ΠΑΤΑ								
ECH315B	COMMUNICATION	NA	ECE	CORE	3	1	0	4	4
ECH317B	EMBEDDED SYSTEM DESIGN	NA	ECE	CORE	3	1	0	4	4
ECH311B-T	MICROWAVE AND RADAR ENGG	NA			_				
ECH411B-T	VLSI TESTING	VLSI DESIG N							
ECH412B-T	MEMS		ECE	ELECTIVE	3	0	0	3	3
ECH313B-T	DIGITAL IMAGE PROCESSING AND COMPUTER VISION	L SIGNAL PROCE SSING							

						_			
	SECURITY IN WIRELESS								
ECH404B-1		NA							
ECH418B-T		NA		-					
С5H311B-T									
			CSE						
C3H4U2B-1									
CSH303B-T	WITH ANDROID	NA							
	MICROWAVE AND								
ECH311B-P	RADAR ENGG LAB	NA							
		VLSI							
		DESIG							
ECH411B-P	VLSI TESTING LAB	N							
ECH412B-P	MEMS LAB	NA							
		DIGITA							
		L	ECE						
	DIGITAL IMAGE	SIGNAL							
ECH313B-P		SSING	-	ELECTIVE	0	0	2	2	1
ECH404B-P	COMMUNICATION LAB	NA							
FCH418B-P	MECHATRONICS LAB	NA	1						
	THEORY OF AUTOMATA			-					
	AND COMPILER								
CSH311B-P	DESIGN LAB	NA	- CCF						
CSH402B-P	BIG DATA LAB	NA	CSE						
	MOBILE COMPUTING								
CSH303B-P	WITH ANDROID LAB	NA							
ECH406B	ASIC DESIGN AND FPGA	NA							
ECH407B	RF SYSTEM DESIGN	NA							
	SPEECH PROCESSING								
ECH433B	AND RECOGNITION	NA							
	RANDOM PROCESSES		ECE						
5011075	FOR WIRELESS			ELECTIVE	3	0	0	3	3
ECH427B		NA NA	-						
ECH413B	NANUIECHNULUGY	NA							
	BLOCK CHAIN								
ECH424B	DEVELOPMENT	NA		4					
CSH404B-T	CLOUD COMPUTING	NA	CSE						
	BASICS OF		MANAGE	ELECTIVE					
MCS368B	ENTRENEURSHIP	NA NA	MENT] 1	0	0	1	1
MEW203B	3D PRINTING(CAD)		ME	ELECTIVE	0	0	2	2	1
---------------	---	---	-----	----------	----	----	---	---	---
ECN423	PROJECT PHASE-I	NA	ECE	CORE	0	0	6	6	3
		13	2	10	25	20			
ECH421B- T	HARDWARE VERIFICATION USING UVM	DIGTA L HARD WARE MODE LLING USING SYSTE M VERIL OG	ECE	CORE	3	1	0	4	4
ECH421B- P	HARDWARE VERIFICATION USING UVM LAB	DIGTA L HARD WARE MODE LLING USING SYSTE M VERIL OG	ECE	CORE	0	0	2	2	1

Course Title/Code	DATA COMMUNICATION (ECH315B)									
Course Type	CORE									
L-T-P Structure	3-1-0									
Credits	4									
Pre-requisites	NA									
Course Objective	To learn the layered architecture of communication protocols and digital signal transmission and encoding techniques along with multiplexing techniques									
Course Outcom	es (COs)	Mapping								
CO1	Analyze the basics of data communication, networking, internet and their importance.	Employability/Skill Development								
CO2	Differentiate wired and wireless computer networks.	Skill Development								
CO3	Analyze TCP/IP their protocols and multiplexing.	Employability/Skill Development								
CO4	Recognize the different internet devices and their functions.	Employability/Skill Development								

Data Communications: Overview of basic modulation techniques, Data Communications: Introduction, History of data communication, Standard organization for data communication, Physical Layer: Transmission media, Serial interfaces: RS-232, RS-449 & RS-530, Parallel interfaces, Circuit switching, Packet switching, Hybrid switching, CCITT X.21, HUBs, Data modems.

SECTION B

Data Communications Protocols and Network Configurations: Data Link Layer: Data link layer services (error detection & correction), Data link layer protocols, HDLC, Point to point protocols, CSMA, CSMA/CD, CSMA/CA, Ethernet, Switches, Basic link protocols. Character oriented and bit-oriented protocols, integrated services digital network (ISDN), IEEE standard 802 for LAN, Framing, Error control, Flow control, ATM. The Network Layer: Design issues, Routing algorithms (distance vector routing, link state routing), Routing protocols (RIP, OSPF, BGP), Virtual circuit and Data gram Subnet, Flow control, Bridges, Routers, Sub-netting and network layer protocols (TCP/IP suite), Connection oriented and connection less services

SECTION C

Multiplexing: The Transport Layer: Design issues, Transport layer protocols (TCP and UDP), Connection management, Study of Internet. Session Layer: session layer services (authentication, authorization), Protocols. Multiplexing: Introduction, Time division multiplexing, T1 digital carrier system, CCITT time division multiplexed carrier systems, CODECS, COMBO chips, Line encoding, T-CARRIERS, Frame synchronization, Bit interleaving vs

word interleaving, Frequency division multiplexing, AT&T's FDM hierarchy, Composite base band Signal, Formation of a master group.

SECTION D

Internet: Presentation layer: services (data encryption, decryption, compression and conversion), Application layer services: DNS, DHCP, FTP, TFTP, SMTP, SNMP, HTTP, WWW. Cloud computing: History, Introduction, Services (Infrastructure as a service, platform as a service, and software as a service).

Text Books:

- 1. Forauzan, Data Communication and Networking (2nd edition), McGraw Hill.
- 2. Andrew S. Tanenbaum, Computer Networks, PHI India.
- 3. Reference Books:
- 4. Leon-Garcia, Widjaja, Communication Networks, TMH.
- 5. William Stallings, Data & Computer Communication, Prentice Hall.

E-resources:

- 1. <u>https://ocw.mit.edu/courses/6-263j-data-communication-networks-fall-2002/</u>
- 2. https://nptel.ac.in/courses/106105082

Course Codes	Course	Cours e Outco mes	Р О 1	P O 2	P O 3	P O 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	Р О 10	Р О 11	P O 12	PS O 1	PS O 2
	DATA COMMUNICA TION	C01	3	3	3	-	-	-	-	-	-	-	-	3	3	-
ECHAIGE		CO2	3	3	3	-	-	-	-	-	-	-	-	3	3	-
ECH315B		CO3	3	-	-	-	-	-	-	-	-	3	3	3	3	-
		CO4	3	3	-	3	-	-	-	-	-	3	3	3	-	3

Course Title/Code	EMBEDDED SYSTEM DESIGN(ECH317B)	
Course Type	CORE	
L-T-P Structure	3-1-0	
Credits	4	
Pre-requisities	NA	
Course Objective	To provide exposure to embedded system development tools with hands on programming techniques.	experience in using basic
Course Outcome	es (COs)	Mapping
CO1	Develop real time systems that are highly time bounded.	Employability and skill development
CO2	Apply various real time algorithms in building embedded systems.	Employability
CO3	Implement the RTOS development tools in building real time embedded systems.	Employability

INTRODUCTION TO EMBEDDED SYSTEMS Overview of embedded systems, embedded system design process, challenges - common design metrics and optimizing them. Hardware - Software code design embedded product development.

SECTION B

REAL TIME OPERATING SYSTEM Real time operating systems Architecture - Tasks and Task states - Tasks and Data - Semaphore and shared data - Message queues, mail boxes and pipes - Encapsulating semaphores and queues - interrupt routines in an RTOS Environment. Introduction to Vx works, RT Linux.

SECTION C

AVR 8515 MICROCONTROLLER Architecture and Programming in assembly and C. Interfacing Analog and digital blocks: Analog-to-Digital Converters (ADCs), Digital to-Analog, Converters (DACs)., Communication basics and basic protocol concepts, Microprocessor interfacing: I/O addressing, Port and Bus based, I/O, Memory mapped I/O, Standard I/O interrupts, Direct memory access, Advanced communication principles parallel, serial and wireless, Serial protocols I2C, Parallel protocols PCI bus, Wireless protocol IrDA, blue tooth., DMA.

SECTION D

PERIPHERAL DEVICES Buffers and latches, Crystal, reset circuit, Chip select logic circuit, timers and counters and watch dog timers, Universal asynchronous receiver, transmitter (UART), Pulse width modulators, LCD controllers, Keypad controllers. Design tradeoffs due to thermal considerations and Effects of EMI/ES etc

Text Books:

1. Frankvahid/Tony Givargis, "Embedded System Design- A unified Hardware/software Introduction".

2. David E Simon, " An embedded software primer ", Pearson education Asia, 2001.

Reference books

- 1. Dreamteach Software team," Programming for Embedded Systems" AVR 8515 manual
- 2. J.W. Valvano, "Embedded Microcomputor System: Real Time Interfacing"
- 3. Jack Ganssle, "The Art of Designing Embedded Systems", Newnes, 1999.

E- Resources:

1.https://ocw.mit.edu/courses/6-087-practical-programming-in-c-january-iap-2010/

2. https://nptel.ac.in/courses/108102045

Course Codes	Course	Course Outcom es	PO1	PO 2	P O 3	P O 4	P O 5	Р О 6	Р О 7	P O 8	Р О 9	Р О 10	Р О 11	PO 12	P S O 1	PSO 2
ECH317B	EMBEDDED SYSTEM	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
	DESIGN	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3

Course Title/Code	MICROWAVE AND RADAR ENGINEERING (ECH311B-T)								
Course Type	Elective								
L-T-P Structure	3-0-0								
Credits	3								
Pre-requisites	JA								
Course Objective	To understand the theoretical principles underlying microwave devices and networks.								
Course Outcomes (C	COs)	Mapping							
CO1	Identify the Microwave components based upon the applications	Employability and skill development							
CO2	Analyze the components for efficiency and range of frequencies	Skill development							
СО3	Design the components for Microwave applications	Employability and Skill development							

WAVEGUIDES: Introduction, comparison with transmission lines, propagation in TE & TM mode, rectangular wave guide, TEM mode in rectangular wave guide, characteristic impedance, introduction to circular waveguides and planar transmission lines.

SECTION B

MICROWAVE COMPONENTS: Directional couplers, tees, hybrid ring, S-parameters, attenuators, cavity resonators, mixers & detectors, matched Load, phase shifter, wave meter, Ferrite devices: Isolators, circulators. Limitation of conventional tubes; Construction, operation and properties of Klystron amplifier, reflex Klystron, magnetron, TWT, BWO, crossed field amplifiers.

SECTION C

MICROWAVE SOLID STATE DEVICE and MICROWAVE MEASUREMENTS: Varactor diode, Tunnel diode, Schottky diode, GUNN diode, IMPATT, TRAPATT and PIN diodes. MASER, parametric amplifiers. Power measurement using calorimeter & bolometers, measurement of SWR, frequency, wavelength and impedance. Microwave bridges.

SECTION D

INTRODUCTION TO RADAR: Block Diagram and operation, Radar Frequencies, Simple form of Radar Equation, Prediction of Range Performance, Pulse Repetition frequency and Range Ambiguities, Applications of Radar.

Text Books

- 1. Microwave devices and circuits: Samuel Liao; PHI
- 2. Microwave devices & Radar Engg: M. Kulkarni; mesh
- 3. Reference Books

- 4. Microwaves and Radar: A.K. Maini; Khanna
- 5. Microwave Engineering by A Dass and S K Dass
- 6. Microwave by K.C. Gupta

E-resources:

https://in.coursera.org/learn/microwave-antenna

Cours e Codes	Course	Cours e Outco mes	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	Р О 10	Р О 11	P O 12	PS O 1	PS O 2
	MICROWA	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
ECH41 VI 1B-T EN	VE AND RADAR ENGINEER	CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
	ING	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3

Course Title/Code	VLSI TESTING (ECH411B-T)								
Course Type	Elective								
L-T-P Structure	3-0-0								
Credits	3								
Pre-requisites	NA								
Course Objective	Students learn to test of static and dynamic circuits. Fault diagnosis: Fault models for diagnosis, Cause- effect diagnosis, Effect-cause diagnosis. Design for testability: Scan design, Partial scan, use of scan chains, boundary scan, DFT for other test objectives, Memory Testing.								
Course Outcon	nes (COs)	Mapping							
CO1	Apply the concepts in testing which can help them design a better yield in IC design.	Employability and skill development							
CO2	Characterize the concepts and working principles of Diodes for its various applications	Skill development							
CO3	Demonstrate familiarity with electronic devices viz., Transistors, Feedback Amplifiers and Oscillators and design implementation.	Skill development							
CO4	Analyze Operational Amplifiers and real-life applications using 555 Timer	Employability and Skill Development							

Scope of testing and verification in VLSI design process. Issues in test and verification of complex chips, embedded cores and SOCs.

SECTION B

Fundamentals of VLSI testing. Fault models. Automatic test pattern generation. Design for testability. Scan design.

SECTION C

Test interface and boundary scan. System testing and test for SOCs. Iddq testing. Delay fault testing. BIST for testing of logic and memories. Test automation.

SECTION D

Design verification techniques based on simulation, analytical and formal approaches. Functional verification. Timing verification. Formal verification. Basics of equivalence checking and model checking. Hardware emulation.

Text Books:

1. M. L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing for Digital Memory and Mixed Signal VLSI Circuits, Springer, 2005

- 2. H. Fujiwara, Logic Testing and Design for Testability, MIT Press, 1985
- 3. M. Abramovici, M. Breuer, and A. Friedman, Digital System Testing and Testable Design, IEEE Press, 1994

Reference Books:

- 4. M. Huth and M. Ryan, Logic in Computer Science, Cambridge Univ. Press, 2004
- 5. T. Kropf, Introduction to Formal Hardware Verification, Springer Verlag, 2000

E-resources:

- 1.https://ocw.mit.edu/courses/6-374-analysis-and-design-of-digital-integrated-circuits-fall-2003/pages/lecture-notes/
- 2. https://nptel.ac.in/courses/117105137

Course Codes	Course	Cours e Outco mes	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	P O1 0	Р О1 1	P O1 2	PS O1	PS O2
	VLSI TESTING	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
ECH411B		CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
-T		CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3

Course Title/Code	MEMS (ECH412B-T)									
Course Type	Elective									
L-T-P Structure	3-0-0									
Credits	3	3								
Pre-requisites	NA									
Course Objective	Students learn to test static and dynamic circuits. Fault diagnosis: Fault models for diagnosis, Cause- effect diagnosis, Effect-cause diagnosis. Design for testability: Scan design, Partial scan, use of scan chains, boundary scan, DFT for other test objectives, Memory Testing.									
Course Outcom	es (COs)	Mapping								
CO1	The students will be able to understand the basic concepts of MEMS and Microsystems.	Employability/Skill Development								
CO2	The students will be able to know various materials used for MEMS Fabrications.	Employability/Skill Development								
CO3	The students will be able to appreciate various steps involved in the fabrication of MEMS.	Employability/Skill Development								
CO4	The students will be able to appreciate various steps involved in the fabrication of MEMS.	Employability/Skill Development								

Intrinsic Characteristics of MEMS – Energy Domains and Transducers- Sensors and Actuators – Introduction to Micro fabrication – Silicon based MEMS processes – New Materials – Review of Electrical and Mechanical concepts in MEMS – Semiconductor devices – Stress and strain analysis – Flexural beam bending- Torsional deflection.

SECTION B

Electrostatic sensors – Parallel plate capacitors – Applications – Interdigitated Finger capacitor – Comb drive devices – Micro Grippers – Micro Motors – Thermal Sensing and Actuation – Thermal expansion – Thermal couples – Thermal resistors – Thermal Bimorph – Applications – Magnetic Actuators – Micro magnetic components – Case studies of MEMS in magnetic actuators- Actuation using Shape Memory Alloys.Piezoresistive sensors – Piezo resistive sensor materials – Stress analysis of mechanical elements – Applications to Inertia, Pressure, Tactile and Flow sensors – Piezoelectric sensors and actuators – piezoelectric effects – piezoelectric materials – Applications to Inertia , Acoustic, Tactile and Flow sensors.

SECTION C

Silicon Anisotropic Etching – Anisotropic Wet Etching – Dry Etching of Silicon – Plasma Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies – Basic surface micro machining processes – Structural and Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction methods – LIGA Process – Assembly of 3D MEMS – Foundry process.

SECTION D

Polymers in MEMS– Polyimide – SU-8 – Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene – Fluorocarbon – Application to Acceleration, Pressure, Flow and Tactile sensors- Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS.

Text Books:

- 1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.
- 2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.
- 4. NadimMaluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

Reference Books:

1. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.

2. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.

3. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.

4. Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application," Springer,

2010.

E-resources:

1. https://ocw.mit.edu/courses/6-777j-design-and-fabrication-of-microelectromechanical-devices-spring-2007/

2. https://nptel.ac.in/courses/117105082

Course Codes	Cou rse	Course Outco mes	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
	MEM S	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
ECH412B-1		CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3

Course Title/Code	DIGITAL IMAGE PROCESSING AND COMPUTER VISION (ECH	313B-T)
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisites	NA	
Course Objective	To familiarize students with image enhancement and restoration technique image compression techniques.	s and explain different
Course Outcom	es (COs)	Mapping
CO1	Develop and apply computer vision techniques for solving practical problems	Employability/Skill Development
CO2	Choose appropriate image processing methods for image filtering, image restoration, image reconstruction, segmentation, classification and representation,	Employability/Skill Development
СОЗ	Implement and test the techniques and algorithms studied	Employability/Skill Development

Digital Image Fundamentals & Image Transforms: Digital Image Fundamentals, Sampling and Quantization, Relationship between Pixels. Image Transforms: 2-D FFT, Properties, Walsh Transform, Hadamard Transform, Discrete Cosine Transform, Haar Transform, Slant Transform, Hotelling Transform. Image Enhancement (Spatial Domain): Introduction, Image Enhancement in Spatial Domain, Enhancement through Point Processing, Types of Point Processing, Histogram Manipulation, Linear and Non – Linear Gray Level Transformation, Local or Neighborhood criterion, Median Filter, Spatial Domain High-Pass Filtering. Image Enhancement (Frequency Domain): Filtering in Frequency Domain, Low Pass (Smoothing) and High Pass (Sharpening) Filters in Frequency Domain.

SECTION B

Image Restoration: Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration. Image Segmentation: Detection of Discontinuities, Edge Linking and Boundary Detection, thresholding, Region Oriented Segmentation. Morphological Image Processing: Dilation and Erosion: Dilation, Structuring Element Decomposition, Erosion, Combining Dilation and Erosion, Opening and Closing, Hit or Miss Transformation.

SECTION C

Computer Vision: Recognition Methodology, Conditioning, Labeling, Grouping, Extracting, Matching. Morphological Image Processing: Introduction, Dilation, Erosion, Opening, Closing, Hit-or-Miss transformation, Morphological algorithm operations on binary images, Morphological algorithm operations on gray-scale images, Thinning, Thickening, Region growing, region shrinking. Image Description: Representation schemes, Boundary descriptors, Region descriptors

SECTION D

Binary Machine Vision: Thresholding, Segmentation, connected component labeling, Hierarchal segmentation, Spatial clustering, Split & merge, Rule-based Segmentation, Motion-based segmentation. Area Extraction, Region and boundary Analysis: Concepts, Data-structures, Edge, Line-Linking, Hough transform, Line fitting, Curve fitting (Least-square fitting), Region properties, External points, Spatial moments, Mixed spatial gray-level moments, Boundary analysis: Signature properties, Shape numbers.

Text books

- 1 Digital Image Processing, Gonzalez.R.C& Woods.R.E., 3/e, Pearson Education, 2008.
- 2. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall, 1998.
- 3. Fundamentals of Digital image Processing, Anil Jain.K, Prentice Hall of India,

4. Digital Image Processing Using MATLAB, Gonzalez.R.C& Woods. R.E., 3/e, Pearson Education, 2014

References

1. Digital Image Processing, S. Jayaraman, S. Esakkirajan, T. Veerakumar, McGraw Hill Education ,2009. Pvt Ltd, NewDelhi

2. 1989Digital Image Processing, Kenneth R Castleman, Pearson Education, 1995.

E-Resources:

1. https://ocw.mit.edu/courses/res-2-006-girls-who-build-cameras-summer-2016/pages/image-processing/

2. https://onlinecourses.nptel.ac.in/noc21_ee23/preview

Course Codes	Course	Cours e Outco mes	P O 1	P O 2	P O 3	P O 4	P O 5	Р О 6	Р О 7	P O 8	P O 9	Р О 10	Р О 11	Р О 12	PS O 1	PS O 2
	DIGITAL	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
ECH413B- T	IMAGE PROCESSING AND COMPLITER	CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
	VISION	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3

Course Title/Code	MECHATRONICS (ECH418B-T)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisites	NA	
Course Objective	To design systems with integrated different domains, including a mechanical domai control domains	n, electrical and electronic
Course Outcom	es (COs)	Mapping
CO1	Describe the operation, working, importance of Electronic Sensors, their selection criteria and characterize their various applications in the design of mechatronics systems	Employability/Skill Development
CO2	Analyze various electronic, electrical and mechanical systems, their interconnection and apply the gained knowledge in the field of Mechanical Engineering.	Skill Development
CO3	Develop and design controllers with the help of programming and its implementation on applications of real-life systems.	Employability/Skill Development
CO4	Integrate mechanical, electronics, control and computer engineering in the design, building, interfacing and actuation of mechatronics systems for a set of specifications.	Employability/Skill Development

Introduction and Basics: What is Mechatronics? A Measurement System with its constituent elements and Hardware; Open and Closed Loop Systems; Sequential Controllers; Micro-processor Based Controllers. A review of Displacement, Liquid Flow, Liquid Level, Temperature Sensors along with Performance Terminology; Selection of Sensors; Introduction to signal conditioning: Signal Conditioning Processes, Inverting Amplifiers, Non-Inverting Amplifiers, Summing, Integrating, Differential, Logarithmic Amplifiers, Comparators, Amplifiers Error, Filtering, Wheatstone Bridge; Digital Signals; Logic Gates, Application of Logic Gates. Introduction to Combinational and sequential logic circuits. Data Presentation Systems – Displays; Magnetic Recording; Data Acquisition Systems; Testing & Calibration; Problems. (Chap-1,2,3,4+notes)

SECTION B

Introduction to Electrical Actuation Systems: Switching Devices, Mechanical Switches – SPST, SPDT, DPDT, keypads; Relays, Solid State Switches, Diodes, Transistors, Solenoid Type Devices: Solenoid Operated Hydraulic and Pneumatic Valves. Control of DC Motors, Permanent Magnet DC Motors, Brush less Permanent Magnet DC Motors, AC Motors and speed controls, Stepper Motors, Servo Motors. System Interfacing and data acquisition: Data acquisition systems, Analog to Digital Conversion, Digital to Analog Conversion, Sample and Hold Amplifiers, Interfacing Motor drives. (ch-7+notes uploaded)

SECTION C

Introduction and description of modes and types of Controllers: Closed Loop Controllers: Continuous and Discrete Processes, Control Modes; Two- step Mode; Proportional Mode – Electronic Proportional Controllers; Derivative Control – Proportional plus Derivative Control; Integral Control - Proportional plus Integral Control; PID Controller. Programmable Logic Controllers: Basic Structure of Programmable Logic Controllers; Input/ Output Processing; Programming; Timers, Internal Relays and Counters, Analogue Input/ Output; Selection of a PLC; Problems.

SECTION D

Brief description of Microprocessors and Input / Output Systems: Control; Microcomputer Structure; Programming Languages; Instruction Sets; Assembly Language Programs; Subroutines. Introduction to Micro- controllers; Applications Input / Output Systems: Interfacing, Requirements, Addressing, Serial/Parallel Interface, Examples of Interfacing. Mechatronics Applications and Case Studies: A Pick & Place Robot, Automatic Camera, Bar Code Recorder etc.

Text Books/Reference Books:

1. W. Bolton, "Mechatronics – Electronic control systems in Mechanical & Electrical Engineering", Pearson Education Ltd., 2003.

2. Nitaigour Premchand Mahalik, Mechatronics principles, concepts and applications, Tata Mc Graw Hill. Reference Books: [R1] Joji P, Pneumatic Controls, Wiley.

Reference Books:

3. David g Alciatore, Michael B Histand, "Introduction to Mechatronics and measurement systems", Mc Graw Hill Education.

4. A Smaili, F Mrad, "Mechatronics - Integrated Technologies for Intelligent Machines, Oxford Higher Education.

E-resources:

1.https://ocw.mit.edu/courses/2-737-mechatronics-fall-2014/

2. <u>https://onlinecourses.nptel.ac.in/noc21_me27/preview</u>

CO-PO Mapping

Course Codes	Course	Cours e Outco mes	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	P O1 0	Р О1 1	P O1 2	PS O1	PS O2
		CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
ECHAIOD T	MEGUATBON	CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
ECH418B-1	ICS	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3

Course Title/Code

THEORY OF AUTOMATA AND COMPILER DESIGN (CSH311B-T)

Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	To design systems with integrated different domains, including a mechanical domain, electrical a control domains	and electronic
Course Outcomes	(COs)	Mapping
CO1	Solve simple decision problems by constructing DFA and NFA over regular language as well as minimizing DFA	Employability
CO2	Demonstrate advanced knowledge of formal computation and its relationship to languages and Automata.	Skill Development/ Employability
CO3	Demonstrate phases of compilation and the impact of language features upon the compilation process	Employability
CO4	Acquire knowledge and analyze different techniques for intermediate code and machine code optimization	Employability

SECTION-A

Finite Automaton: Finite State Systems, Representation of finite automaton, Non-Deterministic finite automata (NDFA), Deterministic finite automata (DFA), Equivalence of DFA and NDFA. Removals of ε – moves from finite automata, Minimization of finite Automata, Regular Expressions: - regular expression, Equivalence of finite automata and Regular Expressions, Arden's theorem. The Pumping Lemma for Regular Sets, Closure properties of regular sets and regular language.

SECTION-B

Context free grammar: - Reduced forms, Chomsky Normal Form (CNF), Griebach Normal Form (GNF). Pushdown Automata: - NDPDA, DPDA, LBA. Turing Machines: - Deterministic and Non-Deterministic Turing Machines, universal Turing machine, Design of TM Chomsky hierarchy.

SECTION-C

Compilers and translators, structure of compiler. Lexical Analyser: Lexical Analysis, recognition of tokens, Syntax Analysis: parsing, Parsing Technique: Topdown approach (Recursive Descent, Recursive Predictive and Non Recursive Predictive Parsing Techniques). Bottom Up approach: Shift- reduce parsing, operator precedence parsing, LR parsers, SLR, LALR and Canonical LR parser.

SECTION-D

Syntax Directed Translations: Syntax directed definition, construction of syntax trees, syntax directed translation scheme, and implementation of syntax directed translation, three address code, quadruples and triples. Code Optimization & Code Generation: Code generation, forms of objects code, machine dependent code, optimization, register allocation for temporary and user defined variables. Peephole optimization.

Text Books:

1. Compilers Principle, Techniques & Tools - Alfread V. AHO, Ravi Sethi& J.D.Ullman; - 1998 Addison Wesley.

2.Compiler Design by O.G. Kakde, 1995, Laxmi Publ.

Reference Books:

Theory and practice of compiler writing, Tremblay & Sorenson, 1985, Mc. Graw Hill.

E-resources:

https://ocw.mit.edu/courses/6-045j-automata-computability-and-complexity-spring-2011/

https://onlinecourses.nptel.ac.in/noc21_cs19/preview

Course Codes	Course	Course Outco mes	Р О 1	Р О 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
	THEODY	CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
CSH311	OF I311 AUTOMAT	CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
B-T	A AND COMPILE	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
	K DESIGN	CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3

Course Title/Code	BIG DATA(CSH402B-T)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	To design systems with integrated different domains, including a mechanical domain, electrical control domains	and electronic
Course Outcomes	(COs)	Mapping
CO1	Know the fundamentals of Big data and Big data Frameworks that makes it useful to solve real world problems	Employability
CO2	Demonstrate the understanding of Big data programming using Hadoop	Employability
CO3	Apply the knowledge to perform Big data analytics using NoSQL Databases	Employability
CO4	Analyze the performance of various frameworks for Business Intelligence	Employability
CO5	Design solutions to a range of complex real world problems	Employability

SECTION-A

Introductory Concepts (Digital Data and Big Data): Digital Data Basics, Types of Digital Data (Structured, Semi-Structured, Unstructured), Introduction to Big Data, Why Big Data? Dimensions of Big Data, Challenges with Big Data, Big Data Stack, Scaling Problems. Big data processing tools(AWS). Hadoop overview: Brief history of Hadoop, Hadoop 1.0 vs. Hadoop 2.0, Hadoop Components, High level architecture of Hadoop, Hadoop Streaming, Hadoop Compression.

SECTION-B

Big data programming using Hadoop: Hadoop Distributed File System: Architecture, Daemons related to HDFS, working with HDFS command, Special features of Hadoop, Introduction to functional programming, How Map Reduce Works, Mapreduce on YARN, Map Reduce Joins, Map Reduce Work Flows. HDFS and Hadoop Ecosystem.

SECTION C

Big Data Analytics: Analytics 1.0, Analytics 2.0, Analytics 3.0, Traditional BI vs. Big Data Environment, Big Data Technology Landscape, NoSQL Databases, NoSQL Vs. RDBMS, New SQL.

SECTION-D

Frameworks: APACHE HIVE: History of HIVE, HIVE architecture, Hive Primitive Data Types and Collection Types, Hive File Formats, Hive Query Language – Statements, DDL DML, Fundamentals of APACHE PIG & HBASE, Business Intelligence on Hadoop.

Text Books:

1. Tom White "Hadoop: The Definitive Guide" Third Edition, O'reilly Media, 2012.

2. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.

3. Michael Minelli (Author), Michael Chambers (Author), AmbigaDhiraj (Author), Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses, Wiley Publications, 2013.

Reference Book:

1. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill Publishing, 2012.

AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

3. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley &sons, 2012.

4. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007.

5. Pete Warden, "Big Data Glossary", O'Reilly, 2011.

6. Paul Zikopoulos , Dirk deRoos , Krishnan Parasuraman , Thomas Deutsch , James Giles , David Corrigan ,

Harness the Power of Big Data The IBM Big Data Platform, Tata McGraw Hill Publications, 2012.

7. Zikopoulos, Paul, Chris Eaton,

E-resources:

1. https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/

2.https://onlinecourses.nptel.ac.in/noc22_cs65/preview

Course Codes	Course	Course Outco mes	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
		CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	3	-	-	-	-	3	-	-	3	3	3
CSH402B-T	BIG DATA	CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	-	-	-	-	-	-	-	-	3	3	3
		CO5	3	3	3	-	-	-	-	-	-	-	-	3	3	3

Course Title/Code	MICROWAVE AND RADAR ENGINEERING LAB(ECH311B-P)	
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To understand the theoretical principles underlying microwave devices and network	vorks.
Course Outcomes	s (COs)	Mapping
CO1	Analyze typical microwave networks using impedance, admittance, transmission and scattering matrix representations.	Employability and skill development
CO2	Design microwave matching networks using L-SECTION, single and double stub and quarter wave transformer	Employability
СОЗ	Perform measurements on microwave devices and networks using power meter and VNA.	Employability

List of Experiments:

- 1. Designing and building a microwave oscillator to generate a continuous wave signal.
- 2. Measuring the reflection coefficient of a sample using a microwave reflection measurement system.
- 3. Characterizing the frequency response of a microwave amplifier using a network analyzer.
- 4. Designing and building a microwave filter to select a specific frequency range.
- 5. Determining the gain and directivity of a microwave antenna using a gain measurement system.
- 6. Measuring the scattering parameters of a microwave device using a scattering parameter measurement system.

- 7. Designing and building a microwave waveguide system to transmit microwave signals over long distances.
- 8. Characterizing the noise figure of a microwave amplifier using a noise figure measurement system.
- 9. Measuring the insertion loss of a microwave transmission line using a vector network analyzer.
- 10. Determining the range and velocity of a moving object using a radar system.

Text Books

- 1. Microwave devices and circuits :Samuel Liao;PHI
- 2. Microwave devices & Radar Engg :M .Kulkarni;Umesh
- 3. Reference Books
- 4. Microwaves and Radar : A.K. Maini; Khanna
- 5. Microwave Engineering by A Dass and S K Dass
- 6. Microwave by K.C.Gupta
- 7. Microwave engineering Rajeswari Chatterjee

E-resources:

https://in.coursera.org/learn/microwave-antenna

CO-PO Mapping

Course Codes	Course	Course Outco mes	Р О 1	Р О 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
		CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
ECH311 B-P	MICROWAVE AND RADAR ENGINEERIN	CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
	G LAB	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	VLSI TESTING LAB(ECH411B-P)	
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	Students learn to test static and dynamic circuits. Fault diagnosis: Fault models for d diagnosis, Effect-cause diagnosis. Design for testability: Scan design, Partial scan, u scan, DFT for other test objectives, Memory Testing.	iagnosis, Cause- effect se of scan chains, boundary
Course Outcon	nes (COs)	Mapping
CO1	Design CMOS logic circuits	Employability and skill development
CO2	simulate circuits within a CAD tool and compare to design specifications	Employability
CO3	Design, implement, and simulate circuits using VHDL.4. write machine language programs and assembly language programs for the simple computer.	Employability

List of Experiments:

- 1. Adders and Subtractors. Half Adder. Full Adder
- 2. Multiplexers and Demultiplexers. 2:1 Multiplexer & 1:2 Demultiplexer
- 3. Fliplflops. JK-Flipflop
- 4. Shift Registers and Counters. Parallel In Serial Out.
- 5. Adders. Ripple Carry Adder
- 6. Comparators and Parity Generators. 4 bit Comparator
- 7. Multipliers. 4*4 Array Multiple
- 8. Mini Project
- 9. Major Project

Text Books:

1. M. L. Bushnell and V.D. Agrawal, Essentials of Electronic Testing for Digital Memory and Mixed Signal VLSI Circuits, Springer, 2005

- 2. H. Fujiwara, Logic Testing and Design for Testability, MIT Press, 1985
- 3. M. Abramovici, M. Breuer, and A. Friedman, Digital System Testing and Testable Design, IEEE Press, 1994

Reference Books:

- 4. M. Huth and M. Ryan, Logic in Computer Science, Cambridge Univ. Press, 2004
- 5. T. Kropf, Introduction to Formal Hardware Verification, Springer Verlag, 2000

E-resources:

1. https://ocw.mit.edu/courses/6-374-analysis-and-design-of-digital-integrated-circuits-fall-2003/pages/lecture-notes/

2. https://nptel.ac.in/courses/117105137

Course Codes	Cours e	Cours e Outco mes	Р О 1	Р О 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	Р О 10	Р О 11	Р О 12	PS O1	PS O2
		CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
ECH411 B-P	VLSI TESTI NG	CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
	LAB	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	MEMS LAB (ECH412B -P)	
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisiti es	NA	
Course Objective	Students learn to test static and dynamic circuits. Fault diagnosis: F effect diagnosis, Effect-cause diagnosis. Design for testability: Scar chains, boundary scan, DFT for other test objectives, Memory Test	ault models for diagnosis, Cause- n design, Partial scan, use of scan ing.
Course Outcor	nes (COs)	Mapping
CO1	apply the knowledge of sensing and transduction mechanisms to design different MEMS devices	Employability/Skill Development
CO2	identify the necessity of fabrication steps of the different MEMS devices	Employability/Skill Development
CO3	identify the necessity of fabrication steps of the different MEMS devices in microsensors .	Employability/Skill Development
CO4	The students will be able to appreciate various steps involved in the fabrication of MEMS.	Employability/Skill Development

List of Experiments

- 1. Simulation of cantilever.
- 2. Simulation of micro machined structures.
- 3. Simulation of accelerometers.
- 4. Simulation of micromirror.
- 5. Simulation MEMS structures using sacrificial layer method.
- 6. Simulation of MEMS sensors.
- 7. Simulation study of integration of circuits and MEMS

Text Books:

- 1. Chang Liu, 'Foundations of MEMS', Pearson Education Inc., 2012.
- 2. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.
- 4. NadimMaluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

Reference Books:

1. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.

2. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD, 2002.

3. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.

4. Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application," Springer, 2010.

E-resources:

1. https://ocw.mit.edu/courses/6-777j-design-and-fabrication-of-microelectromechanical-devices-spring-2007/

2. https://nptel.ac.in/courses/117105082

Course Codes	Cours e	Cours e Outco mes	P O 1	P O 2	P O 3	Р О 4	P O 5	Р О 6	Р О 7	P O 8	Р О 9	P O1 0	P O1 1	P O1 2	PS O1	PS O2
		CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
ECH412B-	MEMS	CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
Р	LAB	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	DIGITAL IMAGE PROCESSING AND COMPUTER VISIO	N LAB (ECH313B-P)
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	To familiarize students with image enhancement and restoration to different image compression techniques.	echniques and explain
Course Outcomes (COs)		Mapping
CO1	Develop a comprehensive understanding of fundamental image processing techniques by successfully implementing image representation in the spatial domain, including grayscale image manipulation and bit-plane analysis.	Employability/Skill Development
CO2	Acquire practical skills in image enhancement and noise reduction through the application of histogram equalization and low-pass filtering techniques, demonstrating the ability to improve image quality and enhance visual interpretation.	Employability/Skill Development
CO3	Apply feature extraction techniques for image analysis and recognitionImplement image compression and to learn the spatial and frequency domain techniques of image compression.	Employability/Skill Development

List of Experiments:

- 1. Introduction: Key features/functions of image processing.
- 2. Image Representation in spatial domain
- 3. Grayscale Image -Data type and bit-plane
- 4. Image Enhancement
- 5. Histogram Equalization
- 6. Smoothing: Low pass filter
- 7. Generate HDL Code for Image Sharpening
- 8. Generate HDL Code for Image Sharpening (contd.)
- 9. Image Acquisition Object detection by colour thresholding
- 10. Object detection by colour thresholding

Text books

1 Digital Image Processing, Gonzalez.R.C& Woods.R.E., 3/e, Pearson Education, 2008.

- 2. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall, 1998.
- 3. Fundamentals of Digital image Processing, Anil Jain.K, Prentice Hall of India,
- 4. Digital Image Processing Using MATLAB, Gonzalez.R.C& Woods. R.E., 3/e, Pearson Education, 2014

References

1. Digital Image Processing, S. Jayaraman, S. Esakkirajan, T. Veerakumar, McGraw Hill Education ,2009. Pvt Ltd, NewDelhi

2. 1989Digital Image Processing, Kenneth R Castleman, Pearson Education, 1995.

E-Resources:

1.https://ocw.mit.edu/courses/res-2-006-girls-who-build-cameras-summer-2016/pages/image-processing/

2. https://onlinecourses.nptel.ac.in/noc21_ee23/preview

Course Codes	Course	Cours e Outco mes	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	Р О 10	Р О 11	Р О 12	PS O 1	PS O 2
	DIGITAL IMAGE	CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
ECH313B-P	PROCESSIN G AND COMPUTER	CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
	VISION LAB	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	SECURITY IN WIRELESS AND MOBILE COMMUNICATION (ECH404B-T)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisites	NA	
Course Objective	The main objective of this wireless security course is to introduce the students to the field of w its importance, compare wired and wireless security, review OSI layers and state their securit discuss the security requirements, security vulnerabilities, and attacks in wireless.	vireless security and ty mechanisms, and
	Course Outcomes (COs)	Mapping
1	Evaluate constraints, design challenges and security issues associated with wireless networks.	Employability
2	Acquire understanding and knowledge of security mechanisms and protocols in wireless communication networks.	Employability
3	Implement the design principles, models, mechanisms and solutions used in wireless network security to obtain authentication and key transport protocols.	Employability

SECTION-A

Security Issues in Mobile Communication: Mobile Communication History, Security – Wired Vs Wireless, Security Issues in Wireless and Mobile Communications, Security Requirements in Wireless and Mobile Communications, Security for Mobile Applications, Advantages and Disadvantages of Application – level Security.

SECTION-B

Security of Device, Network, and Server Levels: Mobile Devices Security Requirements, Mobile Wireless network level Security, Server Level Security. Application Level Security in Wireless Networks: Application of WLANs, Wireless Threats, Some Vulnerabilities and Attach Methods over WLANs, Security for 1G Wi-Fi Applications, Security for 2G Wi-Fi Applications, Recent Security Schemes for Wi-Fi Applications

SECTION-C

Application Level Security in Cellular Networks: Generations of Cellular Networks, Security Issues and attacks in cellular networks, GSM Security for applications, GPRS Security for applications, UMTS security for applications, 3G security for applications, Some of Security and authentication Solutions.

SECTION-D

Application Level Security in MANETs: MANETs, Some applications of MANETs, MANET Features, Security Challenges in MANETs, Security Attacks on MANETs, External Threats for MANET applications, Internal threats for MANET Applications, Some of the Security Solutions. Ubiquitous Computing, Need for Novel Security Schemes for UC, Security Challenges for UC, and Security Attacks on UC networks, Some of the security solutions for UC.

Text Books:

1. Man Young Rhee, "Mobile Communication Systems and Security", John Wiley & amp; Sons, 2009

2. HakimaChaouchi, Maryline Laurent-Maknavicius, "Wireless and Mobile Networks Security", John Wiley & amp; Sons, 2010

3. S. Kami Makki, "Mobile and Wireless Network Security and Privacy", Springer, 2007

4. Merritt Maxim, David Pollino, "Wireless Security", McGraw Hill Professional, 2002

Reference Books:

- 1. Aaron E. Earle, "Wireless Security Handbook", CRC Press, 2010
- 2. Nichols, Lekkas, "Wireless Security Models, Threats, and Solutions", McGraw-Hill
- 3. Aaron E. Earle ,"Wireless Security Handbook", Auerbach
- 4. Steven Furnell, "Mobile Security", IT Governance Ltd, 2009

E-Resources:

1. https://nptel.ac.in/courses/106105160

2. https://ocw.mit.edu/courses/1-264j-database-internet-and-systems-integration-technologies-fall-2013/7e d97701d93fa60abae3643005ac64b7_MIT1_264JF13_lect_36.pdf

Course Codes	Course	Course Outcom es	PO1	PO 2	P O 3	Р О 4	Р О 5	P O 6	Р О 7	P O 8	Р О 9	Р О 10	Р О 11	PO 12	P S O 1	PSO 2
ECH404B-P	SECURIT	CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
	Y IN WIRELES	CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
	S AND MOBILE COMMU NICATIO N	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	SECURITY IN WIRELESS AND MOBILE COMMUNICATION LAB (ECH4	04B-P)
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	The main objective of this wireless security course is to introduce the students to the and its importance, compare wired and wireless security, review OSI layers and state mechanisms, and discuss the security requirements, security vulnerabilities, and attac	field of wireless security their security cks in wireless.
Course Outcome	es (COs)	Mapping
1	Develop a comprehensive understanding of wireless network components and the features of Mobile Security Apps through practical exploration	Employability
2	Acquire practical skills in configuring and managing firewalls for network security, with a focus on implementing Firewall Security in Windows environments.	Employability
3	Demonstrate proficiency in identifying and mitigating security risks associated with web browsers by implementing appropriate security measures and protocols to ensure the confidentiality, integrity, and availability of sensitive information transmitted over the internet.	Employability

Lab Experiments

- 1. Study of different wireless network components and features of any one of the Mobile Security Apps.
- 2. Study of the features of firewall in providing network security and to set Firewall Security in windows.
- 3. Steps to ensure Security of any one web browser (Mozilla Firefox/Google Chrome)
- 4. Study of different types of vulnerabilities for hacking a websites / Web Applications.
- 5. Analysis the Security Vulnerabilities of E-commerce services.
- 6. Analysis the security vulnerabilities of E-Mail Application

Text Books:

1. Man Young Rhee, "Mobile Communication Systems and Security", John Wiley & amp; Sons, 2009

2. HakimaChaouchi, Maryline Laurent-Maknavicius, "Wireless and Mobile Networks Security", John Wiley & amp; Sons, 2010

3. S. Kami Makki, "Mobile and Wireless Network Security and Privacy", Springer, 2007

4. Merritt Maxim, David Pollino, "Wireless Security", McGraw Hill Professional, 2002

Reference Books:

1. Aaron E. Earle, "Wireless Security Handbook", CRC Press, 2010

- 2. Nichols, Lekkas, "Wireless Security Models, Threats, and Solutions", McGraw-Hill
- 3. Aaron E. Earle ,"Wireless Security Handbook", Auerbach
- 4. Steven Furnell, "Mobile Security", IT Governance Ltd, 2009

CO-PO Mapping

Course Codes	Course	Cours e Outco mes	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	Р О 10	Р О 11	Р О 12	PS O 1	PS O 2
	SECURITY IN	CO1	3	3	-	3	-	-	-	-	-	-	-	3	3	3
ECH404B -P	WIRELESS AND MOBILE COMMUNICA	CO2	3	-	-	3	-	-	-	-	-	-	-	-	3	3
	TION LAB	CO3	3	3	3	-	-	-	-	-	3	-	-	3	-	3

Course Title/Code	MECHATRONICS LAB (ECH418B-P)	
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	To design systems with integrated different domains, including a mech electronic control domains	anical domain, electrical and
Course Outcomes	(COs)	Mapping
CO1	Determine various signal conditioning units, amplifiers, logic gates and their role in programmable logic controllers	Employability/Skill Development
CO2	Describe and demonstrate Mechatronics systems and overview of control systems & actuators.	Employability/Skill Development
СОЗ	Distinguish between various sensors, transducers and actuators and their applications.	Employability/Skill Development

Lab Experiments

I (Virtual Lab)

- 1. Plot the LVDT characteristics.
- 2. Characterize the temperature sensor (Thermocouple)
- 3. Demonstrate BJT CE Amplifier operation and Characteristics.

- 4. Practical Application Based on Logic Gates:
- a. Washing machine control using basic AND & NOT gates
- b. Universal NOR gate and its application in automobile alarm system
- c. Seat belt warning system using basic AND & NOT gates

5. Speed Control of DC Motor

II (PLC IDEC Software)

- 1. PLC control system: Basic ladder logic implementation using IDEC Software (Logic Gates).
- 2. Demonstration of Staircase Lightning System using PLC.
- 3. Demonstration of Bottle Filling System using PLC.
- 4. Demonstration of Automatic Car Parking System using PLC.
- 5. Demonstration of Elevator/Automatic Door System using PLC.
- 6. Virtual Project of Mechatronics on Proteus Platform.

Text Books:

1. W. Bolton, "Mechatronics – Electronic control systems in Mechanical & Electrical Engineering", Pearson Education Ltd., 2003.

2. Nitaigour Premchand Mahalik, Mechatronics principles, concepts and applications, Tata Mc Graw Hill. Reference Books: [R1] Joji P, Pneumatic Controls, Wiley.

Reference Books:

3. David g Alciatore, Michael B Histand, "Introduction to Mechatronics and measurement systems", Mc Graw Hill Education.

4. A Smaili, F Mrad, "Mechatronics - Integrated Technologies for Intelligent Machines, Oxford Higher Education.

E-resources:

1.https://ocw.mit.edu/courses/2-737-mechatronics-fall-2014/

2. https://onlinecourses.nptel.ac.in/noc21_me27/preview

Course Codes	Course	Cour se Outc omes	Р О 1	Р О 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	P O 1 0	Р О 11	P O 1 2	P S O 1	P S O 2
		CO1	-	3	-	3	3	-	-	-	-	-	3	-	3	3
ECH418B- P	MECHATR ONICS LAB	CO2	-	3	3	3	3	3	-	3	-	-	3	-	3	3
		CO3	-	3	3	3	3	-	-	3	3	-	3	3	3	3

Course Title/Code	THEORY OF AUTOMATA AND COMPILER DESIGN LAB (CSH311B-P)	
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	Develop practical proficiency in automata theory and compiler design principles throe experimentation and problem-solving, enabling students to design and implement eff systems and algorithms	ough hands-on ficient software
Course Outcomes	(COs)	Mapping
CO1	Solve simple decision problems by constructing DFA and NFA over regular language as well as minimizing DFA	Employabilit y
CO2	Demonstrate advanced knowledge of formal computation and its relationship to languages and Automata.	Employabilit y
CO3	Demonstrate phases of compilation and the impact of language features upon the compilation process	Employabilit y
CO4	Acquire knowledge and analyze different techniques for intermediate code and machine code optimization	Employabilit y

List of Lab Experiments:

- 1. Design a lexical analyzer for given language and the lexical analyzer
- 2. Write a C program to identify whether a given line is a comment or not.
- 3. Write a C program to recognize strings under 'a', 'a*b+', 'abb'.
- 4. Write a C program to test whether a given identifier is valid or not.
- 5. Write a C program to simulate lexical analyzer for validating operators.
- 6. Implement the lexical analyzer using JLex, flex or other lexical analyzer generating tools
- 7. Write a C program for implementing the functionalities of predictive parser for the mini language
- 8. Write a C program for constructing of LL (1) parsing.
- 9. Write a C program for constructing recursive descent parsing.
- 10. Write a C program to implement LALR parsing.
- 11. Write a C program to implement operator precedence parsing.

12. Write a C program to implement Program semantic rules to calculate the expression that takes an expression with digits, + and * and computes the value.

B.Tech. ECE, Manav Rachna University Page 212

13. Convert the BNF rules into Yacc form and write code to generate abstract syntax tree for the mini language

14. 14.Write a C program to generate machine code from abstract syntax tree generated by the parser.

Text Books:

1. Compilers Principle, Techniques & Tools - Alfread V. AHO, Ravi Sethi& J.D.Ullman; - 1998 Addison Wesley.

2.Compiler Design by O.G. Kakde, 1995, Laxmi Publ.

Reference Books:

1. Theory and practice of compiler writing, Tremblay & Sorenson, 1985, Mc. Graw Hill.

E-resources:

https://ocw.mit.edu/courses/6-045j-automata-computability-and-complexity-spring-2011/

https://onlinecourses.nptel.ac.in/noc21_cs19/preview

Course Codes	Course	Cours e Outco mes	Р О 1	Р О 2	Р О 3	Р О 4	Р О 5	Р О 6	Р О 7	Р О 8	Р О 9	P O1 0	P O1 1	P O1 2	PS O1	PS O2
	THEORY	CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
	OF AUTOMA TA AND	CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
С5п311В-Р	COMPILE R DESIGN	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3
	LAB	CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	BIG DATA LAB (CSH402B-P)	
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	Equip students with the practical skills and techniques necessary to manage, process derive insights from large-scale datasets, empowering them to effectively address re challenges in big data analytics and decision-making.	, analyze, and al-world
Course Outcomes ((COs)	Mapping
CO1	Demonstrate the knowledge of big data analytics and implement different file management task in Hadoop	Employability
CO2	Analyze and perform different operations on data using Pig Latin scripts.	Employability
CO3	Illustrate and apply different operations on relations and databases using Hive.	Employability

List of Lab Experiments

- 1. Analyzing Twitter data to identify trends and patterns.
- 2. Analyzing social media data to predict consumer behavior.
- 3. Analyzing web traffic data to optimize website performance.
- 4. Analyzing financial data to identify market trends and predict stock prices.
- 5. Analyzing customer data to identify buying patterns and personalize marketing efforts.
- 6. Analyzing sensor data from Internet of Things (IoT) devices to identify patterns and improve efficiency.
- 7. Analyzing genomics data to identify genetic variations and predict disease risk.
- 8. Analyzing text data to identify sentiment and perform natural language processing tasks.
- 9. Analyzing video data to identify objects and classify content.
- 10. Analyzing satellite data to identify trends and patterns in Earth's surface and atmosphere.

Text Books:

- 1. Tom White "Hadoop: The Definitive Guide" Third Edition, O'reilly Media, 2012.
- 2. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
- 3. Michael Minelli (Author), Michele Chambers (Author), AmbigaDhiraj (Author), Big Data, Big Analytics:
- Emerging Business Intelligence and Analytic Trends for Today's Businesses, Wiley Publications, 2013.

Reference Book:

- 1. Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill Publishing, 2012.
- 2. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
- 3. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley &sons, 2012.
- 4. Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007.
- 5. Pete Warden, "Big Data Glossary", O'Reilly, 2011.

6. Paul Zikopoulos , Dirk deRoos , Krishnan Parasuraman , Thomas Deutsch , James Giles , David Corrigan , Harness the Power of Big Data The IBM Big Data Platform, Tata McGraw Hill Publications, 2012.

E-resources:

1. https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/

2.https://onlinecourses.nptel.ac.in/noc22_cs65/preview

Course Codes	Course	Cour se Outc omes	Р О 1	Р О 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	PO 10	РО 11	PO 12	PS O1	PS O2
	BIG DATA LAB	CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
COLLADD D		CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
CSH402B-P		CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code	MOBILE COMPUTING WITH ANDROID (CSH303B-T)								
Course Type	Elective								
L-T-P Structure	3-0-0								
Credits	3								
Pre-requisities	NA								
Course Objective	This course covers the fundamentals of Android programming using the Android SDK. Topics discussed in this course include: fundamental concepts in Android programming - activities and intents, designing user interface using views, data persistence, content providers, messaging and networking, location-based services, and developing android services								
Course Outcome	Mapping								
CO1	Ability to identify general programming knowledge to develop mobile applications and recall their skills of using Android software development tools.	Employability							
CO2	Demonstrate the interaction between user interface and underlying application components and infrastructure.	Employability							
CO3	Classify the plan and carry out a design work including developing a prototype that can be evaluated with a specified user group and illustrate the deployment of app on various mobile API level.	Employability							
CO4	Have developed practical skills and knowledge to construct software for a mobile application and justify their ability to debug program/application running on mobile devices	Employability							

INTRODUCTION TO ANDROID AND ITS CONCEPTS: Overview of Android Ecosystem, Introduction to Android SDK, Android application building block, features of Android Studio, Android Platform Architecture, Challenges in development, Environment setup & Installation of Android Studio, AVD Setup. Design Criteria for Android Application including Hardware Design, Views: GUI, XML, Programmatically (Text View, Edit Text, Button, Toggle Button, Spinner, Image View, etc), View component properties, Activity And App Comp Activity, Activity life Cycle, Intents: Implicit and Explicit, Manifest File. Layouts (Constraint, Linear, Relative, Table, Grid View) and Layout Properties. Android Resources.

SECTION-B

ANDROID UI AND TESTING: Component Event Handle, Component Focus, Threads, Menu:Appbar with Option menu, Contextual menu, Pop Menu, Sub menu, and menu via XML and Code, Dialog, Navigation: Back & Hierarchy, Array &Base Adapters. Custom List View, Grid View using adapters & Recycler View, Styles and Themes, Adaptive Layout and Resource. Testing using Espresso. BACKGROUND OPERATION: AsyncTask and AsyncTaskLoader, Broadcast Receivers, Service, Notification.

SECTION-C

DATABASES AND ANIMATIONS: Storing Options: Shared Preference, Internal & External Storage, SQLite,SQLite Operation, and Sharing Data between Applications with Content Provider Content Resolver. Working with Cursors: Inserts, Update and delete. Reading and Updating Contacts, Reading Bookmarks. Graphics and Animation: Custom views, Canvas, animation APIs, Multimedia: Audio, Video. Permission, performance and Security. Firebase feature and App publish.

SECTION-D

MOBILE COMPUTING: Introduction to Mobile technology and generations of various wireless technology, characteristics and Application of mobile Computing. Architecture and Security Issues, Design considerations for mobile computing. Modes used for Mobile Technology, Services and Architecture of GSM and CDMA, Mobile IP and Mobile Communication Protocol. Middleware and Gateway Required for Mobile Computing. Mobile Communication via Satellite: Low orbit satellite, Medium orbit satellite, Geo stationary satellite, Satellite phones

Text Books:

1. Lauren Darcey and Shane Conder"Android Wireless Application Development", Pearson Education, 2nd ed. (2011)

Reference Book:

1. Reto Meier, "Professional Android 2 Application Development", Wiley India Pvt Ltd (2011).

2. Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd(2009)

3. Marko Gargenta"LearningAndroid"WileyIndiaPvt Ltd.

Course Codes	Course	Cou rse Out	Р О 1	P O 2	Р О 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	PO 10	PO 11	PO 12	PS O1	PS O2
		es														
CSH303B- T		CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
---------------	--	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---
	MOBILE COMPU TING WITH ANDROI D	CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
		CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3

ourse Title/Code	ASIC DESIGN AND FPGA (ECH406B)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	To understand and learn various ASIC architectures, ASIC design flow, iss testing of ASICs and SOC Design	ues in ASIC design and
Course Outcomes	(COs)	Mapping
CO1	The students will be able to understand basic concept about partitioning, floor planning, placement and routing including circuit extraction of ASIC.	Employability
CO2	Student will demonstrate the synthesis, Simulation and testing of systems	Employability and Skill development
CO3	Student will be able to describe the different phases of the design flow for digital ASICs	Employability
CO4	Student will be able to Categorize different types of ASIC's and explain how non-functional design constraints affect the design process	Employability

Introduction To ASICS, CMOS Logic and ASIC Library Design Types of ASICs - Design flow - CMOS transistors CMOS Design rules - Combinational Logic Cell – Sequential logic cell - Data path logic cell - Transistors as Resistors - Transistor Parasitic Capacitance- Logical effort -Library cell design - Library architecture.

SECTION B

Review of VHDL/Verilog: Entities and architectures Programmable Asics, Programmable ASIC Logic Cells and Programmable ASIC I/O Cells Anti fuse - static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC & AC inputs and outputs - Clock & Power inputs - Xilinx I/O blocks.

SECTION C

Programmable ASIC Interconnect, Programmable ASIC Design Software and Low-Level Design Entry Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX - Design systems - Logic Synthesis - Half gate ASIC -Schematic entry - Low level design language - PLA tools - EDIF- CFI design representation.

SECTION D

ASIC Construction, Floor Planning, Placement and Routing System partition - FPGA partitioning - partitioning methods - floor planning - placement - physical design flow - global routing - detailed routing - special routing - circuit extraction - DRC.Design using Xilinx family FPGA

Text Books:

- 1. M.J.S .Smith, " Application Specific Integrated Circuits " Addison Wesley Longman Inc., 1997
- 2. Skahill, Kevin," VHDL for Programmable Logic", Addison-Wesley, 1996
- 3. John F. Wakherly, "Digital Design: Principles and Practices", 2nd Edn 1994, Prentice Hall International Edn
- 4. Charles W. Mckay, "Digital Circuits a proportion for microprocessors", Prentice Hall

Reference Books :

- 1. M.J.S. Smith, —Application Specific Integrated Circuitsl, Pearson Education, 2008
- 2. Wayne Wolf, -FPGA-Based System Designl, Prentice Hall PTR, 2009.
- 3. Farzad Nekoogar and Faranak Nekoogar, —From ASICs to SOCs: A Practical Approachl, Prentice Hall PTR, 2003.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
ECH406B		CO1	3	3	3	-	3	-	-	-	-	-	3	-	3	3
	ASIC DESIGN AND FPGA	CO2	3	-	3	-	3	-	3	-	-	3	3	-	3	3
		CO3	3	3	3	3	-	-	3	-	-	3	-	-	3	3
		CO4	3	3	3	-	3	-	-	-	-	-	3	3	3	3

Course Title/Code	RF SYSTEM DESIGN (ECH407B)
Course Type	Elective
L-T-P Structure	3-0-0
Credits	3

Pre-requisities	NA												
Course Objective	To understand the principle of operation of radio frequency device technologies used in various applications	understand the principle of operation of radio frequency devices and circuits and expose the RF chnologies used in various applications											
Course Outcomes (COs)	Mapping											
CO1	Identify the RF components based upon the applications	Employment and Skill development											
CO2	Analyze the components for efficiency and range of frequencies	Skill Development											
CO3	Design the components for RF applications Entrepreneurship												

RESONATORS: Basic resonator and filter configurations-special filter realization-filter implementation coupled filter.

SECTION B

RF DIODE AND BJT: RF diodes-bipolar junction transistor - RF field effect transistor-high electron mobility transistors-diode models-transistor models-measurement of active devices-scattering parameter device characterization.

IMPEDANCE MATCHING: Impedance matching using discrete components-microstrip line matching networks amplifier classes of operation and biasing networks.

SECTION C

CHARACTERISTICS OF AMPLIFIERS: Characteristics of amplifier-amplifier power relations-stability consideration-constant gain-broadband, high power, and multistage amplifiers.

SECTION D

HIGH FREQUENCY OSCILLATORS: Basic oscillator model-high frequency oscillator configuration-basic characteristics of mixer.

Text Books:

- 1. David M. Pozar, "Microwave Engineering", Wiley India Limited, Fourth Edition, 2012.
- 2. Samuel. Y. Liao, "Microwave Devices and Circuits", Pearson Education, Third Edition, 2004

References:

1.Ludwig R, Bogdanov G, RF Circuit Design, Theory and Applications, Pearson Education Inc, Second Edition, 2013.

e-Resources (websites/Wikipedia pages/webtutorials/online courses, etc.)

1.e Book Modeling and Simulation for RF System Design by Frevert

2.Free course by Purdue University https://www.classcentral.com/course/edx-rf-system-design-21145

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
-------------	--------	--------------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	----------	----------	----------	----------	----------

ECH407B-T		CO1	3	3	3	3	3	3	3	-	-	3	3	3	3	3
	RF SYSTEM DESIGN	CO2	3	3	3	3	3	3	3	-	-	3	3	3	3	3
		CO3	3	3	3	3	3	3	3	-	-	3	3	3	3	3

Course Title/Code	SPEECH PROCESSING AND RECOGNITION(ECH433B)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	The course provides an introduction to speech processing oriented to human-computer inte especially to speech synthesis, speech recognition and dialogue systems.	raction, i.e.
Course Outcomes (COs)	Mapping
CO1	Record, analyze, characterize, modify, and synthesize speech (and other vocal) signals.	Employability
CO2	Apply speech analysis and synthesis technologies, explain how they work, and discuss their strengths and limitations.	Employability
CO3	Design, execute, interpret, and evaluate simple studies that utilize speech processing	Employability

Digital Models for The Speech Signal Process of speech production, Acoustic theory of speech production, Lossless tube models, and Digital models for speech signals. Time Domain Models for Speech Processing Time dependent processing of speech, Short time energy and average magnitude, Short time average zero crossing rate, Speech vs silence discrimination using energy & zero crossings, Pitch period estimation, Short time autocorrelation function, Short time average magnitude difference function, Pitch period estimation using autocorrelation function, Median smoothing.

SECTION B

Digital Representations of the Speech Waveform: Sampling speech signals, Instantaneous quantization, Adaptive quantization, Differential quantization, Delta Modulation, Differential PCM, Comparison of systems, direct digital code conversion. Short Time Fourier Analysis: Linear Filtering interpretation, Filter bank summation method, overlap addition method, Design of digital filter banks, Implementation using FFT, Spectrographic displays, Pitch detection, Analysis by synthesis, Analysis synthesis systems.

SECTION C

Homomorphic Speech Processing: Homomorphic systems for convolution, Complex cestrum, Pitch detection, Formant estimation, Homomorphic vocoder. Linear Predictive Coding of Speech: Basic principles of linear predictive analysis, Solution of LPC equations, Prediction error signal, Frequency domain interpretation, Relation between the various speech parameters, Synthesis of speech from linear predictive parameters, Applications. Speech Enhancement:

Spectral subtraction & filtering, Harmonic filtering, parametric re-synthesis, Adaptive noise cancellation. Speech Synthesis: Principles of speech synthesis, Synthesizer methods, Synthesis of intonation, Speech synthesis for different speakers, Speech synthesis in other languages, Evaluation, Practical speech synthesis.

SECTION D

Automatic Speech Recognition: Introduction, Speech recognition vs. Speaker recognition, Signal processing and analysis methods, Pattern comparison techniques, Hidden Markov Models, Artificial Neural Networks. Audio Processing: Auditory perception and psychoacoustics - Masking, frequency and loudness perception, spatial perception, Digital Audio, Audio Coding - High quality, low-bit-rate audio coding standards, MPEG, AC- 3, Multichannel audio - Stereo, 3D binaural and Multichannel surround sound.

Text Books:

1. L. R. Rabiner and R. W. Schafer, "Digital Processing of Speech Signals", Pearson Education (Asia) Pte. Ltd., 2004.

2. D. O'Shaughnessy, "Speech Communications: Human and Machine", Universities Press, 2001.

Reference Books:

1. L. R. Rabiner and B. Juang, "Fundamentals of Speech Recognition", Pearson Education (Asia) Pte.Ltd., 2004. Z. Li and M.S. Drew, "Fundamentals of Multimedia", Pearson Education (Asia) Pte. Ltd., 2004.

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS 01	PSO 2
	SPEECH	CO1	3	3	3	3	3	-	-	-	-	-	3	3	3	3
ECH433B	PROCESSING AND	CO2	-	-	-	-	3	-	-	3	3	3	3	3	3	3
	RECOGNITION	CO3	-	-	-	-	3	-	3	3	3	3	3	3	3	3

Course Title/Code	RANDOM PROCESSES FOR WIRELESS COMMUNICATION (ECH427B)
Course Type	Elective
L-T-P Structure	3-0-0
Credits	3
Pre-requisitie s	NA

Course Objective	Students will be able to apply the concepts of probability and random variables/processes for several components of wireless systems such as the average transmit power, bit-error rate a fading channel coefficient.	or characterizing nd behavior of the
Course Outcom	nes (COs)	Mapping
CO1	Describe concepts of probability, conditional probability and independence.	Employability
CO2	Be familiar with some of the commonly encountered random variables, in particular the Gaussian random variable.	Employability
CO3	Obtain the distributions of functions of random variables.	Employability
CO4	Relate probability theory to real statistical analysis	Employability

Probability basics: Sample Space and Events, Axioms of Probability, Conditional Probability - Mary-PAM Example, Independent Events - Block Transmission Example, Independent Events - Multi-antenna Fading Example.

SECTION -B

Random variables use in wireless communication: Bayes Theorem and A-posteriori Probabilities, Maximum A-posteriori Probability (MAP) Receiver, Random Variables, Probability Density Function(PDF), Application: Power of Fading Wireless Channel, Mean, Variance of Random Variables, Application: Average Delay and RMS Delay Spread of Wireless Channel.

SECTION - C

Random processes for wireless: Transformation of Random Variables and Rayleigh Fading Wireless Channel, Gaussian Random Variable and Linear Transformation, Special Case: IID Gaussian Random Variables, Application: Array Processing and Array Gain with Uniform Linear Arrays, Random Processes and Wide Sense Stationarity (WSS), WSS Example Narrowband Wireless Signal with Random Phase.

SECTION -D

Gaussian random processes for wireless: Power Spectral Density (PSD) for WSS Random Process, PSD Application in Wireless Bandwidth Required for Signal Transmission, Transmission of WSS, Random Process Through LTI System, Special Random Processes Gaussian Process and White Noise AWGN Communication Channel, Gaussian Process Through LTI System Example: WGN Through RC Low Pass Filter.

Text Books:

1. Communication Systems by Simon Haykin, Wiley India Pvt. Ltd.

2. Fundamentals of Wireless Communication by David Tse, Cambridge University Press.

Reference Books:

1.R. Gallager, Stochastic Processes: Theory for Applications, Cambridge, 2014.

2.A. Papoulis, Probability, Random Variables, and Stochastic Processes, Mc-Graw Hill, 2005.

3.Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, Third Edition, Prentice-Hall, 2008.

e-Resources

 $1.http://mnit-koha.informindia.co.in/cgi-bin/koha/opac-etail.pl?biblionumber=3901\&shelfbrowse_itemnumber=11377$

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS0 1	PSO 2
ECH427B		CO1	3	3	3	3	3	-	-	-	-	-	3	3	3	3
	RANDOM PROCESSES FOR WIRELESS COMMUNICATION	CO2	3	3	-	-	-	-	-	3	3	3	3	3	3	3
		CO3	3	3	-	-	-	-	3	3	3	3	3	3	3	3
		CO4	3	3	-	-	-	-	3	3	3	3	3	3	3	3

Course Title/Code	NANOTECHNOLOGY (ECH413B)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	To understand the nature and properties of nanomaterials. To provide scientific un application of nanomaterials and nanotechnology in agriculture, health and enviro conservation.	derstanding of nmental
Course Outcom	es (COs)	Mapping
CO1	The students will be able to understand various classes of nanomaterials	Employability

CO2	The students will be able to understand various techniques of synthesis of nanomaterials.	Employability
CO3	The students will be able to understand various characterization techniques of nanomaterials.	Employability
CO4	The students will be able to comprehend applications of nanomaterials in different walks of life	Employability

Background to Nanoscience: Definition of Nano, Scientific Revolution-Atomic Structure and atomic size, emergence and challenge of nanoscience and nanotechnology, carbon age-new form of carbon (CNT to Graphene), influence of nano over micro/macro, size effects and crystals, large surface to volume ration, surface effects on the properties.

SECTION B

Types of nanostructure and properties of nanomaterials: One dimensional, Two dimensional and Three dimensional nanostructured materials, Quantum Dots shell structures, metal oxides, semiconductors, composites, mechanical-physical-chemical properties.

SECTION C

Types of Nanomaterials-Nanoclusters, Solid solutions, Thin film, Nanocomposites (Metal Oxide and Polymer based), Core Shell -Nanostructure, Buckyballs, Carbon nano tubes and, Zeolites minerals, Dendrimers, Micelles, Liposomes, Block Copolymers, Porous Materials, Metal Nanocrystals, Semiconductor nanomaterials

SECTION D

Application of Nanomaterial: Ferroelectric materials, coating, molecular electronics and nanoelectronics, biological and environmental, membrane-based application, polymer based application.

Text Books:

1. Chemistry of nanomaterials: Synthesis, properties and applications by CNR Rao et.al.

2. Nanoparticles: From theory to applications - G. Schmidt, Wiley Weinheim 2004.

Reference Books:

1. Instrument E L Principe, P Gnauck and P Hoffrogge, Microscopy and Microanalysis (2005), 11: 830-831, Cambridge University Press.

2. Processing & properties of structural naonmaterials - Leon L. Shaw, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, Cambridge UK 2005.

e-Resources

https://www.classcentral.com/subject/nanotechnology

Course Code	Course	Course Outcome s	Р О 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS0 1	1 2
		CO1	3	3	3	3	3	-	-	-	-	-	3	3	3	3
ECH413B	NANOTECHNOLOGY	CO2	3	3	-	-	-	-	-	3	3	3	3	3	3	3
		CO3	3	3	-	-	-	-	3	3	3	3	3	3	3	3

Course Title/Code	BLOCKCHAIN DEVELOPMENT (ECH424B)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	To provide conceptual understanding of the function of Block chain as a rescuring distributed ledgers, how consensus on their contents is achieved, applications that they enable.	nethod of , and the new
CO-Mapping		
CO1	Describe the basic concepts and technology used for block chain.	Employability
CO2	Describe the primitives of the distributed computing and cryptography.	Employability
CO3	Illustrate the concepts of Bitcoin and their usage.	Employability
CO4	Implement Ethereum block chain contract.	Employability

INTRODUCTION TO BLOCKCHAIN Block chain- Public Ledgers, Block chain as Public Ledgers -Bitcoin, Block chain 2.0, Smart Contracts, Block in a Block chain, Transactions-Distributed Consensus, The Chain and the Longest Chain - Cryptocurrency to Block chain 2.0 - Permissioned Model of Block chain, Cryptographic -Hash Function, Properties of a hash Function-Hash pointer and Merkle tree.

SECTION B

BITCOIN AND CRYPTOCURRENCY A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay, Consensus introduction, Distributed consensus in open environments-Consensus in a Bitcoin network

SECTION C

BITCOIN CONSENSUS Bitcoin Consensus, Proof of Work (PoW)- Hash cash PoW, Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases, Design issues for Permissioned Block chains, Execute L T P C 3 0 0 3 87 contracts- Consensus models for permissioned block chain-Distributed consensus in closed environmentPaxos.

SECTION D

BLOCKCHAIN APPLICATIONS Internet of Things-Medical Record Management System-Block chain in Government and Blockchain Security-Blockchain Use Cases –Finance

Text Books:

1. Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks by Bashir, Imran, 2017.

2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016.

Reference Books

1. Joseph Bonneau et al, SoK: Research perspectives and challenges for Bitcoin and cryptocurrency, IEEE Symposium on security and Privacy, 2015.

e-Resources

https://www.quicknode.com/?utm_term=blockchain%20developer&utm_campaign=Brand+%7C+Geo+

wwvfNjkheco3yEmJCkv49WQHDK4MDhzds3LEBAar5KBoCvd8QAvD_BwE

Course	Course	Course	РО	PO1	PO1	PO1	PS0	PSO								
Code		Outcome	1	2	3	4	5	6	7	8	9	0	1	2	1	2
		S														

ECH424B		CO1	3	3	3	3	3	-	-	-	-	-	3	3	3	3
	BLOCKCHAIN DEVELOPMENT	CO2	3	3	-	-	-	-	-	3	3	3	3	3	3	3
		CO3	3	3	-	-	-	-	3	3	3	3	3	3	3	3
		CO4	3	3	-	-	-	-	3	3	3	3	3	3	3	3

Course Title/Code	CLOUD COMPUTING (CSH404B-T)	
Course Type	Elective	
L-T-P Structure	3-0-0	
Credits	3	
Pre-requisities	NA	
Course Objective	To provide students with the fundamentals and essentials of Cloud Computing.	
Course Outcomes (C	COs)	Mapping
CO1	Describe fundamental ideas behind Cloud Computing, the evolution of the paradigm and its applicability.	Employability
CO2	Understand the key dimensions of the current and future challenges of Cloud Computing	Employability
СОЗ	Analyze the assessment of the economics, financial, and technological implications for selecting cloud computing for an organization.	Employability
CO4	Develop cloud application and assess cloud Storage systems and Cloud security, the risks involved, its impact	Employability
CO5	Demonstrate the understanding to know the impact of engineering on legal and societal issues involved in addressing the security issues of cloud computing.	Employability

Overview of Cloud Computing: Brief history and evolution - History of Cloud Computing, Evolution of Cloud Computing, Traditional vs. Cloud Computing. Why Cloud Computing, Cloud service models (IaaS, PaaS& SaaS). Cloud deployment models (Public, Private, Hybrid and Community Cloud), Benefits and Challenges of Cloud Computing. Working with Private Cloud: Basics of virtualization, Virtualization technologies, Server virtualization, VM migration techniques, Role of virtualization in Cloud Computing. Business cases for the need of Cloud computing environment, Private Cloud Definition, Characteristics of Private Cloud, Private Cloud deployment models, Private Cloud Vendors, Private Cloud Building blocks namely Physical Layer, Virtualization Layer, Cloud Management Layer, Challenges to private Cloud, Virtual Private Cloud. Implementing private cloud (one out of Cloud Stack, OpenStack, Eucalyptus, IBM or Microsoft)

SECTION-B

Working with Public Clouds: Public Cloud, Public Cloud Service Models, and Public Cloud Players. Infrastructure as a Service Offerings, IaaS Vendors, PaaS offerings, PaaS vendors, Software as a Service. Implementing public cloud (one out of AWS, Windows Azure, IBM or Rackspace). Application Development: Service creation environments to develop cloud based applications. Development environments for service development; Amazon, Azure, Google App.

SECTION-C

Cloud Services Management: Reliability, availability and security of services deployed from the cloud. Performance and scalability of services, tools and technologies used to manage cloud services deployment; Cloud Economics:

Cloud Computing infrastructures available for implementing cloud based services. Cloud Infrastructure: Architectural Design of Compute and Storage Clouds - Layered Cloud Architecture Development –Design Challenges. Inter Cloud Resource Management System – Resource Provisioning and platform Deployment- Global Exchange of Cloud Resources. Future directions in Cloud Computing: Future technology trends in Cloud Computing with a focus on Cloud service models, deployment models, cloud applications, and cloud security. Migration paths for cloud, Selection criteria for cloud deployment. Current issues in cloud computing to future research directions.

SECTION-D

Business Clouds: Cloud Computing in Business, Various Biz Clouds focused on industry domains (Retail, Banking and Financial sector, Life Sciences, Social networking, Telecom, Education). Cloud Enablers (Business Intelligence on cloud, Big Data Analytics on Cloud)-Programming Cloud IT Model: Parallel and Distributed Programming Paradigms, Twister and Iterative Map Reduce, Hadoop Library from Apache- Mapping Applications – Programming Support of Google App Engine, Cloud Software Environments – including Eucalyptus, Open Nebula, OpenStack, Aneka and Cloud Sim.

Text Books:

- 1. A Practical Approach Cloud Computing: By Anthony T Velte, Toby J Velte, Robert C Elsenpeter.Distributed and Cloud Computing: From Parallel Processing to the Internet of Things,
- 2. Kai Hwang, Jack Dongarra and Geoffrey Fox, Morgan Kaufmann, 2011.

Reference Book:

- 1. Cloud computing: Implementation, management and security By Rittinghouse, John, W.
- 2. Cloud Computing Bible, By Barrie Sosinsky, Wiley, 2011.
- 3. Cloud Computing Architected: Solution Design Handbook by Rhoton, John.
- 4. Cloud Security, A comprehensive Guide to Secure Cloud Com puting by Krutz, Ronald L.; Vines, Russell Dean
- 5. Cloud Computing: Principles and paradigms By Raj Kumar Buyya, James Broberg, AndrezeiM.Goscinski, 2011

e-Resources:

https://analyticsindiamag.com/free-online-resources-to-get-started-on-cloud-computing

CO-PO Mapping

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS0 1	PSO 2
		CO1	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO2	3	3	3	3	3	-	-	-	3	-	-	3	3	3
CSH404BB- T	CLOUD COMPUTING	CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3
		CO5	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Course Title/Code

BASICS OF ENTREPRENEURSHIP (MCS368B)

Course Type	Elective	
L-T-P Structure	1-0-0	
Credits	1	
Pre-requisities	NA	
Course Objective	To explain concepts of. Entrepreneurship and build an understanding about busines which entrepreneurs	s situations in
Course Outcomes (COs)	Mapping
CO1	Describe the fundamental concepts and applicable processes of Entrepreneurship	Employability
CO2	Examine the innovative & entrepreneurial models & their design/actualization for viability & applicability	Employability
CO3	Understand Self-discovery and entrepreneurial fervor	Employability
CO4	Analyze the entrepreneurial acumen towards mapping & application	Employability

Decision to become an Entrepreneur-Introduction to entrepreneurship- Defining entrepreneurship, characteristics of successful entrepreneurs, importance of entrepreneurship, Myths about entrepreneurs, Corporate entrepreneurship, Self-Discovery & SWOT analysis, Effectuation –Meaning, Five principles of effectuation, Defining a Start-up, 4 Ps of a Startup, Reasons of Start-up failure, Basic Model of entrepreneurial process.

SECTION-B

Opportunity Discovery-Recognizing opportunities and generating Ideas, Validating the market need, identify problem worth solving using Jobs to be done(JTBD) methodology, design Thinking-Meaning, Design Thinking Values, Design Thinking Process, Double diamond approach in design thinking

SECTION-C

Customer and Solution-Customer Vs. Consumer, different market types and their specific requirements, estimate the market size, identify your customer Segment (through STP), Switching costs and psychological biases, understanding Market research for startups, Customer profile, Value proposition Canvas- understanding the jobs, pains and gains.

SECTION-D

Business Model & Validation and Business Plan-Business Model- Concept, Elements of Business Model and Lean Approach, Lean canvas template, , Blue Ocean Strategy, difference between Solution Demo and MVP, Business plandefinition and importance, components of Business plan- market, technical and financial, legal and ethical aspects in a Start-Up.

Text book:

1. Entrepreneurship: Successfully Launching New Ventures, 6th edition, Bruce R. Barringer and R Duane Ireland, Published by Pearson Copyright © 2019, 6th edition

Reference Book:

- 2. <u>Hispanic-Latino Entrepreneurship</u>
- 3. e-Resources:<u>eBooks about or by Drucker</u>

CO-PO Mapping

Course Code	Course	Course Outcom es	Р О 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	P O 8	Р О 9	PO 10	PO 11	PO 12	PS 01	PS O2
		CO1	-	-	-	-	-	3	-	3	3	3	-	3	-	-
MCG2(9D	BASICS OF	CO2	-	-	-	-	-	3	-	3	3	3	-	3	-	-
MCS368B	RSHIP	CO3	-	-	-	-	-	3	-	3	3	3	-	3	-	-
		CO4	-	-	-	-	-	3	-	3	3	3	-	3	-	-

Course Title/Code	3D PRINTING (CAD) (MEW203B)	
Course Type	Elective	
L-T-P Structure	0-0-2	
Credits	1	
Pre-requisities	NA	
Course Objective	To allow students to design and print complex designs than traditional manufacturing	processes
Course Outcomes (COs)		Mapping
C01	Demonstrate the design aspects of the 3D printable file.	Employability
CO2	Describe the advantages and limitations of 3D Printing for different applications	Employability
CO3	Knowledge on 3D Printing approach and basic terminology	Employability
CO4	Knowledge on the process steps for obtaining an object using 3D Printing technology	Employability

SECTION-A

Introduction of 3D Printing, Evolution of 3D Printing, What is additive manufacturing, General procedure of 3D Printing

SECTION-B

3D CAD file formats, Stereo lithography (stl) files, Various Printing technologies (SLA, SLS, FDM, Poly jet printing, Color jet Printing, SHS, SLM, LOM, Multi jet Printing, DLP).

SECTION-C

FDM in detail, Operating Plasto 200 - Live demonstration, STL principles, Object placement.

SECTION-D

Object analysis, Slicing and printing, Print settings.

Textbooks

1. Chua C.K., Leong K.F. and LIM C.S Rapid prototyping: Principles an Applications, World Scientific publications, 3rdEd., 2010

2.D.T. Pham and S.S. Dimov, "Rapid Manufacturing", Springer, 2001

Reference Books

1. Terry Wohlers, "Wholers Report 2000", Wohlers Associates, 2000

2.Paul F. Jacobs, "Rapid Prototyping and Manufacturing"-, ASME Press, 1996 5. Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2nd Ed, 2014.

e-Resources (websites/Wikipedia pages/webtutorials/online courses, etc.)

- 1. https://nptel.ac.in/courses/112103306
- 2. 3D printing from zero to hero in blender 3X-3D design -Udemy

Course Code	Course	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS0 1	PS0 2
		CO1	3	3	3	-	-	-	-	-	3	3	-	-	3	-
MEW203B	3D PRINTI NG (CAD)	CO2	3	3	3	-	-	-	-	-	3	3	-	-	3	-
		CO3	3	3	3	-	-	-	-	-	3	3	-	-	3	-
		CO4	3	3	3	-	-	-	-	-	3	3	-	-	3	-

Course Title/Code	HARDWARE VERIFICATION USING UVM (ECH421B-T)					
Course Type	CORE					
L-T-P Structure	3-1-0					
Credits	4					
Pre-requisities	Digital hardware modeling using VERILOG					
Course Objective	To provide a solid base of understanding of the System Verilog language and instru use the building blocks of System Verilog Assertions and UVM.	ction for how to				
Course Outcomes (COs)	Mapping				
CO1	Describe the features of System Verilog, SVA and basics of UVM for verification, Employability and understand the improvements in verification efficiency.					

CO2	Analyse advanced verification features, such as the practical use of classes, randomization, checking, and coverage.	Employability
CO3	Practice developing advanced coverage driven verification environments using advanced System Verilog features, SVA and UVM.	Employability

System Verilog Intro -Basic Data types - Operators and System Tasks - Flow Control-Training DUT -Tasks and Functions -Arrays and Queues Methods

SECTION-B

System Verilog Classes/Interfaces-Interfaces -Class Basics -Advanced Connections-Advanced Classes -Class Based Randomization

SECTION-C

Test bench Architecture/Checking/Coverage – Test Bench Architecture- Sequence Generation -Class Based Checkers

SECTION-D

System Verilog UVM and SVA -UVM Introduction (Part I) -UVM Introduction (Part II) -Universal Methodology Concepts-SVA Introduction - Concurrent Assertions o

Reference books:

- 1. System Verilog For Verification: A Guide to Learning the Test bench Language Features by Chris Spear & Greg Tumbush (3rd Edition)
- 2. A Practical Guide to Adopting Universal Verification Methodology (UVM) by Sharon Rosenberg & Kathleen A Meade (2nd Edition)
- 3. The UVM Primer: A Step-by-Step Introduction to the Universal Verification Methodology by Ray Salemi

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS0 1	PS0 2
ECH421B-T	HARDWA RE VERIFIC ATION USING UVM	CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	3
		CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	HARDWARE VERIFICATION USING UVM (ECH421B-P)						
Course Type	CORE						
L-T-P Structure	0-0-2						
Credits	1						
Pre-requisities	Digital hardware modeling using VERILOG						
Course Objective	To provide a solid base of understanding of the System Verilog language and instruction for how to use the building blocks of System Verilog Assertions and UVM.						
Course Outcomes (COs)	Mapping					
CO1	Describe the features of System Verilog, SVA and basics of UVM for verification, and understand the improvements in verification efficiency.	Employability					
CO2	Analyze advanced verification features, such as the practical use of classes, randomization, checking, and coverage.	Employability					
CO3	Practice developing advanced coverage driven verification environments using advanced System Verilog features, SVA and UVM.	Employability					

List of Experiments

- Data Types and Programs
- Using Classes and Defining Class
- Creating a Driver Using an Interface and Clocking Blocks
- CDI Class-Based Randomization and Polymorphism
- Creating a Reusable Testbench Architecture
- Writing a Checker Functional Coverage
- Writing Functional Coverage Code
- Implication and Boolean Operators SVA Sequences
- Lab SVA-2: Repetition and goto Operators

Course	Cours	Course	PO	PO1	PO1	PO1	PS0	PS0								
Code	e	Outcome	1	2	3	4	5	6	7	8	9	0	1	2	1	2
		5														

ECH421B- P HAF WAI VER CAT N USII UVN	HARD WARE	CO1	3	3	3	-	-	-	-	-	3	3	-	3	3	3
	VERIFI CATIO N	CO2	3	3	3	-	-	-	-	-	3	3	-	3	3	3
	N USING UVM	CO3	3	3	3	-	-	-	-	-	3	3	-	3	3	3

Course Title/Code	PROJECTPHASE-II/INDUSTRIAL TRAINING(ECN420)						
Course Type	CORE						
L-T-P Structure	320-360 hours						
Credits	10						
Pre-requisities	NA						
Course Objective	To provide a solid base of understanding of the System Verilog language and instruuse the building blocks of System Verilog Assertions and UVM.	action for how to					
Course Outcomes (COs)	Mapping					
CO1	Integrate the relevant theory and practices followed in a logical way and draw appropriate conclusions	Employability					

CO-PO Mapping

Course	Course	Course	PO	PO1	PO1	PO1	PS0	PS0								
Code		Outcomes	1	2	3	4	5	6	7	8	9	0	1	2	1	2
ECN420	PROJE CTPHA SE-II/IN DUSTR IAL TRAINI NG	CO1	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Credits

	ECE	ECE-VLSI
SEMESTER	CREDITS ASSIGNED	CREDITS ASSIGNED
Ι	20.5	20.5
II	23	23
III	20	21
IV	20	25
V	17	21
VI	21	26
VII	20	25
VIII	12	12
SUMMER TRAINING POST II SEM	2	2
SUMMER TRAINING POST IV SEM	2	2
SUMMER TRAINING POST VI SEM	3	3
TOTAL CREDITS	160.5	180.5

COURSE CODE	COURSES	COURSE OUTCOM ES	CO STATEMENT							
		CO1	Apprehend the importance of thermodynamic properties of Gibbs free energy and entropy functions							
СНН144-Т	CHEMISTR	CO2	Describe the water chemistry, theories of corrosion and concepts of metallurgy through Ellingham diagram							
	CHEMISTR	CO3	Analyze the basics of stereochemistry and the importance of green synthesis with emphasis on its twelve principles							
		CO4 Analyze the importance of spectroscopic techniques and its application various fields to deduce structures								
		CO1	Develop innovative methods to produce soft water for industrial use and potable water at cheaper cost.							
		CO2	Substitute metals with conducting polymers and also produce cheaper biodegradable polymers to reduce environmental pollution.							
CHH144-P	Y LAB	CO3	Design economically and new methods of synthesis nano materials.							
		CO4	Apply their knowledge for protection of different metals from corrosion							
		CO5	Have the knowledge of converting solar energy into most needy electrical energy efficiently and economically to reduce the environmental pollution.							
		CO1	Calculate radius of curvature and Evolutes. Write the Taylor series & Maclaurin series expansion of function of single variable and apply in solving other mathematical problems. Find the maximum/minimum values of a function.							
MATH TICS (CAL) S ANI LINE, ALGE	TICS (CALCULU	CO2	Apply the tool Fourier series for learning advanced Engineering Mathematics.							
	S AND LINEAR ALGEBRA)	CO3	Determine gradient vector fields and find potential functions and evaluate line integrals directly and by the fundamental theorem.							
			Calculate rank and inverse of a matrix and solve system of linear equations using Cramer's Rule, Gauss elimination and Gauss Jordan method.							

		CO1	Analyze and apply Test Driven Development approach to design programs.
CSH101B-T	PROGRAM MING FOR PROBLEM	CO2	Apply the programming language constructs as per given problems
	SOLVING USING C	CO3	Apply C programming language constructs on open source platform
		CO4	learn to work in a team using different online platform for program development
	PROGRAM	CO1	Analyze and apply Test Driven Development approach to design programs.
CSH101B-P	MING FOR PROBLEM	CO2	apply programming language constructs as per given problems
	SOLVING USING C LAB	CO3	apply C programming language constructs on open source platform
		CO4	learn to work in a team using different online platform for program development
		CO1	Use the drawing instruments effectively and able to dimension the given figures
MEW102B	ING GRAPHICS AND	CO2	Appreciate the usage of engineering curves in tracing the paths of simple machine components
DR	DRAWING	CO3	Analyse the concept of projection and acquire visualization skills, projection of points
LWS324	INDIAN CONSTITU TION	CO1	Demonstrate the knowledge and ability to analyze the basic principles of the Constitution of India;
	PROFESSI	CO1	Students will be able to develop all-round personality by mastering inter-personal skills to function effectively in different circumstances.
CDS101	ONAL COMMUNI CATION	CO2	Students will be able to demonstrate effective communication through grammatically correct
	CAHON	CO3	Students will be able to apply effective listening and speaking skills in real life scenarios.
		CO1	Apply the fundamental concepts of Basic Electrical circuits.
	BASICS OF ELECTRIC AL AND	CO2	Apply the concepts and working principles of Diodes for its various applications
ECH103B- T	ELECTRO NICS ENGINEER	СОЗ	Demonstrate familiarity with electronic devices viz., Transistors, Feedback Amplifiers and Oscillators and design implementation.
	ENGINEER ING	CO4	Analyse and Design Operational Amplifiers and real-life applications using 555 Timer.

	BASICS OF ELECTRIC AL AND	CO1	Describe the electrical properties and characteristics of various materials, used in the electrical appliances , devices , instruments
ECH103B T	ELECTRO NICS	CO2	Design circuits using diodes and transistors
	ING LAB	CO3	Realize circuits using opamps
	•	•	SEMESTER-II
		CO1	Students would be able to describe semiconductors, fermi level, and various types of diodes and demonstrate its applications in electronics.
PHH102B-	PHYSICS FOR ENGINEER	CO2	Measure various parameters using CRO
-	S	CO3	Calculate electrical parameters using various measurement techniques
		CO4	Analyze the Electromagnetic Wave equation and its applications
		CO1	Students will be able to analyze various characteristics of the semiconductor devices and circuits.
PHH102B-P	PHYSICS FOR ENGINEER S LAB	CO2	Demonstrate the working of electronic components and devices.
		CO3	Students will be able to measure component values and parameters of the circuits using different measuring devices
		CO4	Apply the knowledge in designing the application based projects.
		CO1	Solve ordinary differential equations(ODE)
		CO2	Apply the tool of power series for learning advanced Engineering Mathematics.
	MATHEMA	CO3	Find roots of polynomial and transcendental equations by using numerical techniques.
MAH106B	TICS – II (DIFFERE NTIAL	CO4	Identify and impute the interpolating polynomial for equispaced and unequi spaced intervals
	S)	CO2	Analyze the characteristics of diode and implement its various applications
		CO3	Analyze the characteristics of a Transistor in various configurations and their applications
		CO4	Design the oscillator circuits to produce oscillations of desired frequencies and implementation of logic gates.

EDS288	APPLIED PHILOSOP	CO1	Examine the philosophical problems implicit in the experience of self, others and the society
		CO2	Explore the philosophy of influential philosophers with respect to society, Science and success in life
	НҮ	CO3	Demonstrate the understanding of the concepts and theories of moral philosophy.
		CO4	Reflect philosophically and ethically on one's own personal, professional and civic lives.
		CO1	Develop critical thinking to understand the application of psychology
EDS289	APPLIED PSYCHOL	CO2	Identify the impact of Stereotyping, prejudice and discrimination in formation of attitude
	OGY	CO3	Identify major attributes of Personality.
		CO4	Understand social psychology and able to solve the inflicts among the group
		CO1	analyze the social cultural dynamics that contribute to transformation of Indian Society
	APPLLIED	CO2	Develop the necessary skills of social processes which affect our everyday lives.
EDS290	SOCIOLOG Y	CO3	Study and analyze various temporary issues of society and able to provide solutions of social barrier and benefiting the masses.
		CO4	develop basic research skills in the area of sociology and help to find possible solution of specific social barriers of the society
		CO1	To communicate articulately.
		CO2	To show the basics of presentation skills.
EDS166	PROFESSI ONAL	CO3	To exhibit substantive writing skills.
	COMMUNI CATION	CO4	To demonstrate the procedure of debating skills.
		CO5	To display the developed critical aptitude.
		CO5	To exhibit creative thinking.

СНН145	ENVIRON MENTAL SCIENCES	CO1	Explain the multidisciplinary dimensions of environmental issues and suggest potential solutions
		CO2	Discuss about the various types of organisms and draw inferences about their interactions in different e systems
		CO1	To apply the fundamental concepts of Basic Electronics circuits.
ECH106B- T	ELECTRO NIC DEVICES	CO2	Characterize & apply the concepts and working principles of various diodes for real time applications
-	& CIRCUITS	CO3	Demonstrate the implementation of transistors and FETs in various circuits
		CO4	To demonstrate the circuit of power supplies and voltage regulators
	ELECTRO	CO1	Demonstrate the working of electronic components and various measuring instruments.
ECH106B-P	NIC DEVICES & CIRCUITS LAB	CO2	Analyze the characteristics of diode and implement its various applications
201110021		CO3	Analyze the characteristics of Transistors and their applications
		CO4	To demonstrate the circuit of power supplies and voltage regulators and apply the knowledge in designing an Application based Project
		-	SEMESTER-III
	INTRODU CTION TO DATA STRUCTU	CO1	To understand the concept of Dynamic memory management, algorithms and their complexity; demonstrate the abstract properties and operations of Linear data structures (using Static Memory Allocation) : Array ; To apply different Searching and Sorting algorithms.
CSH112B		CO2	Demonstrate the abstract properties and operations of Linear data structures (using Dynamic Memory Allocation) : Link List and variations of Linked List.
	RE	CO3	Demonstrate the abstract properties and operations of Linear data structures (using Static & Dynamic Memory Allocation) : Stacks, Queues
		CO4	Demonstrate the abstract properties and operations of Non Linear data structures (using Static & Dynamic Memory Allocation) : Trees, Graphs
FCH202B-	NETWORK	CO1	A thorough understanding of the fundamental concepts and techniques used in the two-port network terminology.
есп202В- Т	THEORY	CO2	Analyze the transient behavior of electrical networks for various excitations.

		CO3	Analyze different types of filter configuration and Synthesize any filter configuration within a reasonable percentage error.
		CO4	Design the synthesized circuit with practical parts
		CO1	To describe and demonstrate the fundamental concepts and techniques used in the two-port network terminology.
ECH202B-P	NETWORK THEORY LAB	CO2	To analyze the electrical networks using transient analysis for various excitations.
		CO3	To design and analyze different types of filter configuration and Synthesize any filter configuration within a reasonable percentage error.
		CO1	Understand the working of transistor as an amplifier at low and high frequency and do the analysis of single and multistage amplifiers
ECH203B-	ANALOG	CO2	Comprehend the applications of Field effect transistor amplifier.
T	ELECTRO NICS	CO3	Appreciate the working of power amplifier circuits and Oscillators and implement various designs
		CO4	Visualize the working of operational amplifiers and will be able to demonstrate the same on various applications
	ANALOG ELECTRO NICS LAB	CO1	To describe the operation of the transistor as an amplifier at low and high frequencies and to analyze single-stage and multistage amplifiers.
		CO2	To comprehend the working of FETs and apply it for FET amplifier applications.
ECH203B-P		CO3	Analyze the operation of power amplifier circuits and oscillators to design circuits for various applications
		CO4	Visualize the operation of operational amplifiers and be able to show it in a variety of applications
		CO1	Differentiate between signal types and determine various properties of practical systems
ECH204B	SIGNALS	CO2	Determine the behavior and shape of a signal in frequency domain
	SIGNALS AND SYSTEMS	CO3	Characterize and analyze the response of the LTI system to test signals
		CO4	Classify continuous and discrete time signals and illustrate the convergence of discrete time signals

		CO5	Transform signals (both in continuous and discrete time) into more recognizable form of frequency domain for analysis of communication.
		CO1	Apply the fundamental concepts, techniques and applications of Number Systems and Codes used in digital electronics.
ECH208B-	DIGITAL ELECTRO	CO2	Analyse and design various Combinational circuits.
Т	NICS	CO3	Analyse and design various Sequential circuits
		CO4	Describe how analog signals are used to represent digital values in different logic families.
		CO1	To comprehend and implement the essential principles, techniques, and applications of Number Systems and Codes as they pertain to digital electronics.
ECH208B D	DIGITAL	CO2	To design and analyze various Combinational circuits.
LCI1200D-I	NICS LAB	CO3	To design and analyze various Sequential circuits.
		CO4	To demonstrate and interpret the digital signals from analog signals in various logic families.
		CO1	The student shall be able to describe research and its impact.
RD0505	INTRODU CTION TO RESEARC H	CO2	The student shall be able to identify broad area of research, analyze, the processes and procedures to Carryout research
ND0505		CO3	The student shall be able to use different tools for literature survey
		CO4	The student is able choose specific area of research and supervisor/mentor is finalized
		CO1	Students will be able to greet each other.
FLS101	~~~~~	CO2	Students will be able to make sentences with the verb ser. They will be able to use verb ser with nationality and professions.
	51 ANI511-1	CO3	Students will be able to learn cardinal and ordinal numbers.
		CO4	Students will be able to recognize masculine and feminine words in Spanish. They will be learning the articles and its usages with nouns.
FLS103	FRENCH-I	CO1	Exchange greetings and do introductions using formal and informal expressions. Understand and use interrogative and answer simple questions.

		CO2	Learn Basic vocabulary that can be used to discuss everyday life and daily routines, using simple sentences and familiar vocabulary.	
		CO3	Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary.	
		CO4	Students will be able to understand audio text and comprehend to the same. They will be able to form paragraph using auxiliary verb and basic verbs.	
		CO1	Students will be able to exchange greetings and introductions using formal and informal expressions. They will be able to ask and answer simple questions.	
		CO2	Students will be able to discuss restaurant vocabulary, using simple sentences.	
FLS102	GERMAN-I	CO3	Students will be able to discuss likes and dislikes, understand simple conversations (e.g., greetings, and daily activities).	
		CO4	Students will be able to differentiate certain patterns of behavior in the cultures of the German- speaking world and the student's native culture.	
		CO5	Students will be able to exchange greetings and introductions using formal and informal expressions. They will be able to ask and answer simple questions.	
	PROFESSI ONAL COMPETA NCY ENHANCE MENT-I	CO1	Students will become better at analytics and problem solving	
		CO2	Students will be able to solve aptitude problems quickly utilizing the short cuts	
CDO201		CO3	Students will have enhanced level of reasoning, numerical skills and speed	
		CO4	Students will have the ability to 'quickly think on their feet'	
		CO5	Students will have enhanced concentration & thinking ability.	
ECW111B	PROGRAM MING FUNDAME NTALS USING LINUX	CO1	To analyze the semantics of the given problem statement and illustrate the programming techniques to solve them	
		CO2	To integrate the learned and applied concepts into given LINUX projects to produce real life solutions	
SEMESTER-IV				

ECH206B	ELECTRO MAGNETI	CO1	Analyze the transmission lines and their parameters using the Smith Chart
		CO2	Describe the depth of static and time-varying electromagnetic field as governed by Maxwell's equations
	AND WAVES	CO3	Formulate and analyze problems involving lossy media with planar boundaries using uniform plane waves.
		CO4	Apply concepts of this subject in Antenna Engineering and its applications.
		CO1	Apply the knowledge of signals and transformation to study different modulation techniques.
ECH207B- T	ANALOG & DIGITAL COMMUNI	CO2	Identify and implement the modulation techniques required for analog and digital communication.
1	CATION	CO3	Implement analog to digital conversion and examine the techniques for reducing the error produced in this process.
		CO4	Analyze the effect of distortion and noise on a communication system.
	ANALOG & DIGITAL	CO1	Demonstration of generation and detection of analog modulation techniques using MATLab
ECH207B-P		CO2	Compare the different analog modulation techniques.
	CATION LAB	CO3	Analyze digital modulation techniques by using MATLab tools.
		CO4	Analyze different techniques in modern digital communications, in particular in source coding using MATLab tools.
	MICROPR OCESSOR AND	CO1	To develop assembly language program for microprocessors and microcontrollers.
ECH220B-		CO2	To comprehend the architectural and pipelining concepts for Microprocessors.
1	INTERFAC ING	CO3	To interface peripherals, sensors and actuators and in embedded systems.
		CO4	To design microprocessor based system.
		CO1	Design and implement programs on 8085 microprocessors.
ECH220B-P	MICROPR OCESSOR AND	CO2	Design interfacing circuits with 8085 microprocessors.
10112200-1	INTERFAC ING LAB	CO3	Design and implement programs on 8086 microprocessors.

		CO4	Design and implement programs on 8086 microprocessors.
		CO1	Understand different steps involved in the fabrication of ICs using MOS transistor, CMOS/BiCMOS transistors and passive components.
ECH209B-	VLSI	CO2	Analyse and formulate the circuit characterization and performance estimation for an integrated circuit.
Т	DESIGN	CO3	Formulate and analyse the performance of various inverter structure through pull-up to pull-down ratios.
		CO4	Apply the concept of this subject for designing combinational logic circuits using CMOS.
		CO1	.Exchange greetings and do introductions using formal and informal expressions. Understand and use interrogative and answer simple questions.
FLS105	SPANISH-II	CO2	.Learn Basic vocabulary that can be used to discuss everyday life and daily routines, using simple sentences and familiar vocabulary. Express their likes and dislikes. Also will have understanding of simple conversations about familiar topics (e.g., greetings, weather and daily activities,) with repetition when needed.
		CO3	Identify key details in a short, highly-contextualized audio text dealing with a familiar topic, relying on repetition and extra linguistic support when needed. Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary.
		CO4	Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary. Provide basic information about familiar situations and topics of interest.
		CO5	Express or/and justify opinions using equivalents of different verbs. Differentiate certain patterns of behavior in the cultures of the Spanish-speaking world and the student's native culture.
		CO6	Describe various places, location, themselves using simple sentences and vocabulary.
		CO1	Students will be able to write short essays on family and friends. They will have knowledge of
		CO2	Tenses.
FLS106	GERMAN-I I	CO3	Students will be able to identify classroom vocabulary in the German language
		CO4	Students will be able to speak ordinal and cardinal numbers and they will also learn months, days in German

		CO5	They will be able to express or/and justify opinions using equivalents of different verbs
		CO6	They will be able to express or/and justify opinions using equivalents of different verbs.
FLS107		CO1	.Exchange greetings and do introductions using formal and informal expressions. Understand and use interrogative and answer simple questions.
	FRENCH-II	CO2	Learn Basic vocabulary that can be used to discuss everyday life and daily routines, using simple sentences and familiar vocabulary. Express their likes and dislikes. Also will have understanding of simple conversations about familiar topics (e.g., greetings, weather and daily activities,) with repetition when needed.
		CO3	Identify key details in a short, highly-contextualized audio text dealing with a familiar topic, relying on repetition and extra linguistic support when needed. Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary.
		CO4	Describe themselves, other people, familiar places and objects in short discourse using simple sentences and basic vocabulary. Provide basic information about familiar situations and topics of interest.
		CO5	Express Gorand justify opinions using equivalents of different verbs. Differentiate certain patterns of behavior in the cultures of the French-speaking world and the student's native culture.
		CO6	Describe various places, location, themselves using simple sentences and vocabulary.
CSW208B	PROGRAM MING FOR PROBLEM SOLVING	CO1	Analyze the concept of Dynamic memory management, algorithms and their complexity; demonstrate the abstract properties and operations of Linear data structures (using Static Memory Allocation) : Array ; To apply different Searching and Sorting algorithms.
		CO2	Demonstrate the abstract properties and operations of Linear data structures (using Dynamic Memory Allocation) : Link List and variations of Linked List.
	USING PYTHON	CO3	Demonstrate the abstract properties and operations of Linear data structures (using Static & Dynamic Memory Allocation) : Stacks, Queues
		CO4	Demonstrate the abstract properties and operations of Non Linear data structures (using Static & Dynamic Memory Allocation) : Trees, Graphs

ECH214B- T	DIGTAL HARDWAR E MODELLI	CO1	Understand the design units of VHDL and implementation of circuits using different modelling styles.
		CO2	Understand the implementation of circuits using Behavioral Modelling, concept of Delays, Dataflow Modelling and the concept of Resolution Function.
	NG USING VHDL	CO3	Implementation of combinational and sequential circuits using VHDL.
		CO4	Analysis of FSM and Test bench and Logic of several PLDs.
		CO1	Designing digital circuits, behavioral and RTL modeling of digital circuits using Verilog HDL
ECH214B-P	DIGTAL HARDWAR E MODELLI	CO2	Verifying these models and synthesizing RTL models to standard cell libraries and FPGAs
	NG USING VHDL LAB	CO3	Designing, modeling, implementing and verifying combinational and sequential circuits using VHDL.
		CO4	Analysis of FSM and Test bench and Logic of several PLDs.
	PROFESSI	CO1	To improve students basic knowledge about Arithmetic Aptitude
CDO202	ONAL COMPETA NCY ENHANCE MENT-II	CO2	To make students solve aptitude problems quickly utilizing the short cuts
		CO3	To make students have the ability to 'quickly think on their feet'
		CO4	To strengthen students communication skills
			SEMESTER-V
		CO1	Describe the concept of microcontrollers and methods of programming the same.
ЕСН326В- Т	MICROCO NTROLLE	CO2	Students will be able to differentiate between the various addressing modes and work on the various instruction set.
	RS & INTERFAC ING	CO3	Analyse the working of 8051 Microcontroller by knowing its architecture, addressing modes and interrupts.
		CO4	Students will be able to build microcontroller-based system around 8051 and PIC.

ECH326B-P	MICROCO NTROLLE RS &	CO1	To demonstrate the microcontroller using 8051 controller and evaluate on various parameters
		CO2	Demonstrate Interfacing of peripherals to microcontroller.
	INTERFAC ING LAB	CO3	Demonstrate data collection and acquisition using 8051 microcontroller
		CO4	Design real world applications using microcontrollers
	HARDWAR	CO1	use System Verilog RTL design and synthesis features, including new data types, literals, procedural blocks, statements, and operators, relaxation of Verilog language rules.
ECH234B- T	E VERIFICA TION	CO2	Analyze synthesis issues, enhancements to tasks and functions, new hierarchy and connectivity features, and interfaces.
	USING SYSTEM VERILOG	CO3	Appreciate and apply the System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays.
		CO4	Utilize the features of system Verilog for more effective and efficient verification.
	HARDWAR E VERIFICA TION USING SYSTEM VERILOG LAB	CO1	Apply System Verilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.
ECH234B-P		CO2	Synthesis features, including new data types, literals, procedural blocks, statements, and operators, relaxation of Verilog language rules, fixes for synthesis issues, enhancements to tasks and functions, new hierarchy and connectivity features, and interfaces.
	CMOS	CO1	Analyze complex microelectronics circuits and systems
ECH314B-		CO2	Design layout and schematics related with various CMOS based application
Т	VLSI DESIGN	CO3	Analyzing combinational circuits based on CMOS by understanding their working principles
		CO4	Analyze the performance issues & inherent trade off involved in system design.
		CO1	Design combinational circuits using VLSI designing Platforms like Tanner
	CMOS VLSI	CO2	Design layout and schematics related with various CMOS based application
ECH314B-P	DESIGN LAB.	CO3	Design and analyze sequential circuits using VLSI designing Platforms like Tanner

		CO4	Implementing the VLSI design for real time problems.
ECHIAID	INFORMA TION	CO1	Design the channel performance using Information theory
		CO2	Comprehend various error control code properties
T	THEORY AND CODING	CO3	Apply linear block codes for error detection and correction
		CO4	Design BCH & RS codes for Channel performance improvement against burst errors.
	INFORMA	CO1	Explain what is the significance of this quantitative measure of information in the communications systems
ECH401B-P	TION THEORY	CO2	decide an efficient data compression scheme for a given information source
	AND CODING LAB	CO3	calculate entropy, joint entropy, relative entropy, conditional entropy, and channel capacity of a system
		CO4	Describe the theoretical framework upon which error-control codes are built
		CO1	Explain the concept of Wireless Sensor Networks by studying the architecture of a single node
ECH403B-	WIRELESS SENSOR NETWORK S	CO2	Differentiate and understand the various routing protocols for ad-hoc wireless networks
Т		CO3	Describe the concept of MAC protocols in Wireless Sensor Networks and identify devices based on these MAC standards
		CO4	Analyse design constraints and challenges in WSN like network lifetime, security, and analyzing a few networks through simulations.
		CO1	Data sensing and analysis using platform like MKR1000
	WIRELESS	CO2	Demonstrate data exchange for MKR1000
ECH403B-P	NETWORK S LAB	CO3	Demonstrating audio data and analyzing the parameters.
		CO4	Analyzing a few networks through simulations and implementing for real time problems.
CSH201B-T	OOPS USING JAVA	CO1	Explain the concept of Object Oriented Programming with introduction to JAVA.

		CO2	Describe the principles of Inheritance and encapsulation and use them to create public and private classes and member functions.
		CO3	Explain the concept of exception handling in JAVA and also learn about the various API packages.
		CO4	Quantify the challenges in JAVA programming by understanding the features of applets and Input Output streams.
		CO1	Demonstrating the syntax using concepts
	OODS	CO2	Demonstrating the interfaces and packages
CSH201B-P	USING JAVA LAB	CO3	To analyze the semantics of the given problem statement and illustrate the programming techniques to solve them.
		CO4	To integrate the learned and applied concepts into given java projects to produce real life solutions.
	INTERNET OF THINGS	CO1	Describe the fundamentals of IoT and to identify the IoT networking components
ECH305B-		CO2	Select IoT protocols and software.
Т		CO3	Build schematic for IoT solutions
		CO4	Design a simple IoT system made up of sensors, wireless network connection, data analytics and display/actuators, and write the necessary control software.
ЕСН305В- Р	INTERNET OF THINGS LAB	CO1	To disseminate the design knowledge in analyzing the specific requirements for applications in sensors regarding energy supply, memory, processing, and transmission capacity
		CO2	Proactive in understating the routing protocols function and their implications on data transmission delay and bandwidth
		CO3	Familiarize the protocol, design requirements, suitable algorithms, and the state-of-the-art cloud platform to meet the industrial requirement.
		CO4	On a profound level to implement hardware & software for wireless sensor networks in day to day life
ЕСН327В- Т	PROTOTY PING IOT BASED HEALTHC ARE SYSTEMS.	CO1	Analyze the requirements and applications of IOT in healthcare.
---------------	--	-----	---
		CO2	Design prototypes of wireless and wearable devices for healthcare diagnosis and care.
	PROTOTY PING IOT	CO1	Demonstrate the protocol requirements of IOT in healthcare.
ECH327B-P	BASED HEALTHC ARE SYSTEMS LAB	CO2	Students will be able to design prototypes of wireless and wearable devices for healthcare diagnosis and care.
		CO1	Analysis of problem solving, knowledge and reasoning.
	ARTIFICIA	CO2	Apply difficult real life problems in a state space representation so as to solve them using AI techniques like searching and game playing
CSH310B-T	L INTELLIG ENCE	CO3	Formulate valid solutions for problems involving uncertain inputs or outcomes by using decision making techniques.
		CO4	Examine the issues involved in knowledge bases, reasoning systems and planning.
	ARTIFICIA L INTELLIG ENCE LAB	CO1	Analysis of problem solving, knowledge and reasoning.
		CO2	Apply difficult real-life problems in a state space representation so as to solve them using AI techniques like searching and game playing
CSH310B-P		CO3	Formulate valid solutions for problems involving uncertain inputs or outcomes by using decision making techniques.
		CO4	Examine the issues involved in knowledge bases, reasoning systems and planning.
		CO1	Describe the concept with definitions of Economics and the laws of utilities associated with it
MCS231	BASICS OF ECONOMI CS	CO2	Analyse the concept for demand and supply and the laws governing the elasticity of demand and supply.
		CO3	Identify the factors affecting the production and differentiate between the various types of costs involved in the factory environment.

		CO4	Analyse the different types of markets and apply the features of markets to understand the role of supply and demand.		
		CO1	Describe of the fundamental concepts of Financial Management and Financial system.		
MCS232	FUNDAME NTALS OF	CO2	Analyse the Financial statements and apply the knowledge in decision making.		
	FINANCE	CO3	Identify the sources for raising capital in Business(s) and analyze.		
		CO4	Identify different techniques of capital budgeting.		
	PROFESSI ONAL	CO1	To improve student's basic knowledge about Arithmetic Aptitude		
CDO202-P	COMPETA NCY ENHANCE MENT-II	CO2	Solve aptitude problems quickly utilizing the short cuts, quick thinking and good communication skills		
ECW210B	ALTAIR WORKSHO P	CO1	To perform math calculations, manipulating, and visualizing data		
Le W210B		CO2	solve typical engineering related mathematical tasks		
		CO1	Describe the design units of VHDL and implementation of circuits using different modelling styles.		
ECH221D	DIGITAL SYSTEM DESIGN	CO2	Implement circuits using Behavioral Modelling, concept of Delays, Dataflow Modelling and the concept of Resolution Function.		
T		CO3	Implementation of combinational and sequential circuits using VHDL.		
		CO4	Analysis of FSM and Test bench and Logic of several PLDs.		
		CO1	Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder.		
ECH331B-P	DIGITAL SYSTEM DESIGN	CO2	Analyze the operation of medium complexity standard combinational circuits like the multiplexer, demultiplexers.		
	LAB	CO3	Design complex digital system such as ALU.		
		CO4	Develop and simulate register-level models of hierarchical digital systems		
SEMESTER-VI					

	INTRODU CTION TO NEURAL	CO1	Describe the elementary concepts of neural networks, categorize different neural network architectures, algorithms, applications and their limitations.
ECH310B- T		CO2	Comprehend the concepts of feed forward neural networks and appropriate learning rules for each of the architectures
	NETWORK S	CO3	Realize the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory
		CO4	Analyze the application of fuzzy logic control to real time systems.
		CO1	Select appropriate neural network architectures for a given application (i.e. they shall recognize the class of applications and relate it to specific architectures).
ECH310B-P	INTRODU CTION TO NEURAL NETWORK	CO2	Design and implement a neural network simulation (with two modes of operation: learning and processing) using a high-level language
	S	CO3	Develop models for different applications using fuzzy system and Matlab.
		CO4	Analyze the application of fuzzy logic control to real time systems
	WAVELET S AND MULTIRAT E SYSTEM	CO1	Characterize continuous and discrete wavelet transforms
ECH316B- T		CO2	Apply multi resolution analysis
		CO3	Identify various wavelets and evaluate their time- frequency resolution properties
	DIGITAL SIGNAL AND IMAGE PROCESSI NG	CO1	Analyze images in the frequency domain using various transforms
ECH334B-		CO2	Analyze images in the frequency domain using various transforms
Т		CO3	Interpret signal and image segmentation and representation techniques
ECH302B-P	DIGITAL SIGNAL AND	CO1	Assess the techniques, skills, and modern engineering tools necessary for analysis of different electrical signals and filtering out noise signals in engineering practice
	IMAGE PROCESSI	CO2	Design digital filters using various techniques
		CO3	Implement different signal and image processing techniques.
ECH336B- T	CONTROL SYSTEMS	CO1	To represent and demonstrate the electrical modeling of mechanical systems and various reduction techniques.

		CO2	Analyses the time and frequency-domain responses of first and second-order systems to various inputs.
		CO3	Apply root locus and frequency domain techniques to design a feedback control system to meet specific performance requirements.
		CO4	Synthesize control system models on state space models and express state transition matrix for the calculation of variables.
		CO1	Describe typical components, basic concepts and I/O devices of a PLC
ECH419B-	PLC PROGRAM MING AND	CO2	Apply the concept of electrical ladder logic, its history, and its relationship to programmed PLC instruction.
Т	APPLICATI ONS	CO3	Design and program PLC circuits for various real time PLC applications.
		CO4	Demonstrate the use of PLC timers and counters for the control of industrial processes
	PLC PROGRAM MING AND APPLICATI ONS LAB	CO1	Use timer, counter, and other intermediate programming functions.
ECH419B-P		CO2	Design and program basic PLC circuits for entry-level PLC applications.
		CO3	Design and program a small, automated industrial production line.
ECH321B- T	HEALTH CARE SYSTEMS (DESIGN AND ANALYSIS	CO1	Demonstrate the applications of knowledge of the requirements, design, and control of major business processes that are integral within a healthcare enterprise system including registration, order entry and result reporting, clinical documentation, scheduling and patient billing.
		CO2	Demonstrate the applications of knowledge systems analysis & design methodologies and techniques including: requirement analysis, development strategies, project management, and system implementation / operation.
		CO3	Demonstrate the applications of knowledge of control and audit of healthcare information systems including: controls for privacy and confidentiality, controls for computer crimes (fraud and abuse) and systems reliability (information security, processing integrity, and availability.)
ECH322B- T	BIOMEDIC	CO1	Possess the basic mathematical, scientific and computational skills necessary to analyze ECG and EEG signals.
	AL SIGNAL PROCESSI NG	CO2	Apply classical and modern filtering and compression techniques for ECG and EEG signals
		CO3	Develop a thorough understanding on basics of ECG and EEG feature extraction.

ECH322B-P	BIOMEDIC AL SIGNAL PROCESSI	CO1	Implement algorithms based on discrete time signals.
		CO2	Apply appropriate signal processing techniques in analyzing various bio signals
	NG LAB	CO3	Design IIR and FIR filters for bio-signal processing.
		CO1	Describe the concept of Cybercrimes and cyber Law
	CYBER	CO2	Critically analyses the problems arising out of online transactions and find solutions
LWS323	LAW	CO3	Analyze Intellectual Property issues in the cyber space and apply relevant laws to protect or fight infringement
		CO4	Explain Information Technology Act 2000 and critically analyze various sections to apply such laws appropriately
	LAWS	CO1	Describe the basics of Intellectual Property Rights
	RELATING TO INTELLEC TUAL PROPERTY RIGHTS	CO2	Categorize different types of intellectual properties
LWS321		CO3	Recognize the crucial role of intellectual property in different industries
		CO4	Explain the procedural aspect pertaining to application and grant of patent, trademark, geographical indication etc
	PROFESSI ONAL COMPETA NCY RNHANCE	CO1	To strengthen students Modern Math concepts
		CO2	To help students perform well during placements
CDO302		CO3	To help students get proficient with problem solving at various levels like basic, intermediate and advanced
	MENT-IV	CO4	To help students with shortcuts to problem solving
		CO5	To improve students communication skills
ЕСН426В- Т		CO1	Comprehend various standards, technologies and architecture used in Analog and Digital Mobile Radio systems.
	WIRELESS AND MOBILE COMMUNI CATION	CO2	Describe various mechanisms of propagation and fading in mobile radio channels and their impact on designing the radio systems.
		CO3	Comprehend various concepts of equalization and diversity techniques and their applications in designing the mobile radio systems.

		CO4	Appreciate the system design concept in wireless radio systems and their applications in wireless communication.
	WIRELESS	CO1	Develop ad-hoc network applications using appropriate algorithms/protocols.
ECH426B-P	MOBILE COMMUNI	CO2	Develop ad-hoc network applications using appropriate algorithms/protocols.
	CATION LAB	CO3	Identify and simulate the medium access control mechanisms suitable for given applications.
		CO1	Understand and Analyze the basics of data communication, networking, internet and their importance.
ECH315B- T	DATA COMMUNI	CO2	Differentiate wired and wireless computer networks
1	CATION	CO3	Analyze TCP/IP their protocols and multiplexing.
		CO4	Recognize the different internet devices and their functions.
	EMBEDDE D SYSTEM DESIGN	CO1	Develop real time systems that are highly time bounded.
ECH317B		CO2	Apply various real time algorithms in building embedded systems.
		CO3	Implement the RTOS development tools in building real time embedded systems.
	MICROWA VE AND RADAR ENGINEER ING	CO1	Identify the Microwave components based upon the applications
ECH311B-P		CO2	Analyze the components for efficiency and range of frequencies
		CO3	Design the components for Microwave applications
	VLSI TESTING	CO1	Apply the concepts in testing which can help them design a better yield in IC design.
ECH411B-P		CO2	Characterize & Apply the concepts and working principles of Diodes for its various applications
		CO3	Demonstrate familiarity with electronic devices viz., Transistors, Feedback Amplifiers and Oscillators and design implementation.
		CO4	Analyse and Design Operational Amplifiers and real-life applications using 555 Timer
ECH412B-P	MEMS	CO1	The students will be able to understand the basic concepts of MEMS and Microsystems.

		CO2	The students will be able to know various materials used for MEMS Fabrications.
		СОЗ	The students will be able to appreciate various steps involved in the fabrication of MEMS.
		CO4	The students will be able to appreciate various steps involved in the fabrication of MEMS.
	DIGITAL	CO1	Develop and apply computer vision techniques for solving practical problems
ECH413B-P	IMAGE PROCESSI NG AND COMPUTE P. VISION	CO2	Choose appropriate image processing methods for image filtering, image restoration, image reconstruction, segmentation, classification and representation,
	K VISION	CO3	Implement and test the techniques and algorithms studied
ECH418B-P	MECHATR ONICS	CO1	Describe the operation, working, importance of Electronic Sensors, their selection criteria and characterize their various applications in the design of mechatronics systems
		CO2	Analyse various electronic, electrical and mechanical systems, their interconnection and apply the gained knowledge in the field of Mechanical Engineering.
		CO3	Develop and design controllers with the help of programming and its implementation on applications of real-life systems.
		CO4	Integrate mechanical, electronics, control and computer engineering in the design, building, interfacing and actuation of mechatronics systems for a set of specifications.
	THEORY OF AUTOMAT	CO1	Solve simple decision problems by constructing DFA and NFA over regular language as well as minimizing DFA
CSH311B-T		CO2	Demonstrate advanced knowledge of formal computation and its relationship to languages and Automata.
	A AND COMPILER DESIGN	CO3	Demonstrate phases of compilation and the impact of language features upon the compilation process
		CO4	Acquire knowledge and analyze different techniques for intermediate code and machine code optimization
CSH402B-T	BIG DATA	CO1	Know the fundamentals of Big data and Big data Frameworks that makes it useful to solve real world problems

		CO2	Demonstrate the understanding of Big data programming using Hadoop
		CO3	Apply the knowledge to perform Big data analytics using NoSQL Databases
		CO4	Analyze the performance of various frameworks for Business Intelligence
		CO5	Design solutions to a range of complex real world problems
	MICROWA	CO1	Analyze typical microwave networks using impedance, admittance, transmission and scattering matrix representations.
ECH411B-P	VE AND RADAR ENGINEER	CO2	Design microwave matching networks using L section, single and double stub and quarter wave transformer
	ING LAB	CO3	Perform measurements on microwave devices and networks using power meter and VNA.
	VLSI TESTING LAB	CO1	Design CMOS logic circuits
ECH411B-P		CO2	simulate circuits within a CAD tool and compare to design specifications
		CO3	Design, implement, and simulate circuits using VHDL.4. Write machine language programs and assembly language programs for the simple computer.
	MEMS LAB	CO1	Apply the knowledge of sensing and transduction mechanisms to design different MEMS devices.
		CO2	identify the necessity of fabrication steps of the different MEMS devices
ECH412B-P		CO3	identify the necessity of fabrication steps of the different MEMS devices in micro sensors .
		CO4	The students will be able to appreciate various steps involved in the fabrication of MEMS.
	DIGITAL IMAGE	CO1	Develop any image processing application.
	PROCESSI NG AND	CO2	Apply feature extraction techniques for image analysis and recognition
ECH413B-P R VISION LAB	R VISION LAB	CO3	Implement image compression and to learn the spatial and frequency domain techniques of image compression.

ECH414B-P	SECURITY IN WIRELESS AND MOBILE COMMUNI	CO1	Evaluate constraints, design challenges and security issues associated with wireless networks.
		CO2	Acquire understanding and knowledge of security mechanisms and protocols in wireless communication networks.
	CATION LAB	CO3	Implement the design principles, models, mechanisms and solutions used in wireless network security to obtain authentication and key transport protocols.
	SECUDITY	CO1	Determine various signal conditioning units, amplifiers, logic gates and their role in programmable logic controllers
ECH418B-P	MECHATR ONICS LAB	CO2	Describe and demonstrate Mechatronics systems and overview of control systems & actuators.
		CO3	Distinguish between various sensors, transducers and actuators and their applications.
	THEORY OF AUTOMAT A AND COMPILER DESIGN LAB	CO1	Solve simple decision problems by constructing DFA and NFA over regular language as well as minimizing DFA
CSH311B-P		CO2	Demonstrate advanced knowledge of formal computation and its relationship to languages and Automata.
		CO3	Demonstrate phases of compilation and the impact of language features upon the compilation process
		CO4	Acquire knowledge and analyze different techniques for intermediate code and machine code optimization
	BIG DATA LAB	CO1	Demonstrate the knowledge of big data analytics and implement different file management task in Hadoop
CSH402-P		CO2	Analyze and perform different operations on data using Pig Latin scripts.
		CO3	Illustrate and apply different operations on relations and databases using Hive.
		CO1	Ability to identify general programming knowledge to develop mobile applications and recall their skills of using Android software development tools.
ECH406B	ASIC DESIGN AND FPGA	CO2	Demonstrate the interaction between user interface and underlying application components and infrastructure.
		CO3	Classify the plan and carry out a design work including developing a prototype that can be evaluated with a specified user group and illustrate the deployment of app on various mobile API level.

		CO4	Have developed practical skills and knowledge to construct software for a mobile application and justify their ability to debug program/application running on mobile devices
	22	CO1	Identify the RF components based upon the applications
ЕСН407В- Т	RF SYSTEM DESIGN	CO2	Analyze the components for efficiency and range of frequencies
		CO3	Design the components for RF applications
	SPEECH	CO1	Record, analyze, characterize, modify, and synthesize speech (and other vocal) signals.
ЕСН403В- Т	PROCESSI NG AND RECOGNIT	CO2	Apply speech analysis and synthesis technologies, explain how they work, and discuss their strengths and limitations.
	ION	CO3	Design, execute, interpret, and evaluate simple studies that utilize speech processing
	RANDOM PROCESSE S FOR WIRELESS COMMUNI CATION	CO1	Understand concepts of probability, conditional probability and independence.
ECH427B-		CO2	Understand random variables and probability distributions.
т		CO3	Be familiar with some of the commonly encountered random variables, in particular the Gaussian random variable.
		CO4	Be able to obtain the distributions of functions of random variables.
	NANOTEC HNOLOGY	CO1	The students will be able to understand various classes of nanomaterials
		CO2	The students will be able to understand various techniques of synthesis of nanomaterials.
T		CO3	The students will be able to understand various characterization techniques of nanomaterials.
		CO4	The students will be able to comprehend applications of nanomaterials in different walks of life
		CO1	Describe the basic concepts and technology used for block chain.
ECH424B	BLOCKCH AIN DEVELOP MENT	CO2	Describe the primitives of the distributed computing and cryptography related to block chain.
		CO3	Illustrate the concepts of Bitcoin and their usage.

		CO4	Implement Ethereum block chain contract
		CO1	Understand fundamental ideas behind Cloud Computing, the evolution of the paradigm and its applicability.
		CO2	Understand the key dimensions of the current and future challenges of Cloud Computing
CSH404BB -T	CLOUD COMPUTI NG	СОЗ	Analyze the assessment of the economics, financial ORGANISATION
		CO4	Develop cloud application and assess cloud Storage systems and Cloud security, the risks involved, its impact
		CO5	Demonstrate the understanding to know the impact of engineering on legal and societal issues involved in addressing the security issues of cloud computing.
		CO1	Understand the fundamental concepts and applicable processes of Entrepreneurship
MCS368B	BASICS OF ENTREPRE NEURSHIP	CO2	Examine the innovative & entrepreneurial models & their design/actualization for viability & applicability
		CO3	Understand Self-discovery and entrepreneurial fervor
		CO4	Analyse the entrepreneurial acumen towards mapping & application
	3D PRINTING (CAD)	CO1	Understand the design aspects of the 3D printable file.
MEW203B		CO2	Understanding the advantages and limitations of 3D Printing for different applications
1112 (12052		CO3	Knowledge on 3D Printing approach and basic terminology
		CO4	Knowledge on the process steps for obtaining an object using 3D Printing technology
ECH421-T	HARDWAR	CO1	Describe the features of System Verilog, SVA and basics of UVM for verification, and understand the improvements in verification efficiency.
	HARDWAR E VERIFICA TION USING UVM	CO2	Analyse advanced verification features, such as the practical use of classes, randomization, checking, and coverage.
		CO3	Practice developing advanced coverage driven verification environments using advanced System Verilog features, SVA and UVM.

ECH421-P	HARDWAR E VERIFICA TION USING UVM LAB	CO1	Describe the features of System Verilog, SVA and basics of UVM for verification, and understand the improvements in verification efficiency.
		CO2	Analyse advanced verification features, such as the practical use of classes, randomization, checking, and coverage.
		CO3	Practice developing advanced coverage driven verification environments using advanced System Verilog features, SVA and UVM.
ECN420	PROJECTP HASE-II/ INDUSTRI AL TRAINING	CO1	Integrate the relevant theory and practices followed in a logical way and draw appropriate conclusions.