

DEPARTMENT OF CHEMISTRY End term Examination January 2023

SEMESTER	I st	DATE OF EXAM	2 3-01-2023
SUBJECT NAME	Environmental Sciences	SUBJECT CODE	СНН137
BRANCH	B.Sc. B.Ed./B.A. B.Ed.	SESSION	I
TIME	09:00 AM to 11:00 AM	MAX. MARKS	50
PROGRAM	B. Sc. B. Ed B.A. B. Ed	CREDITS	4
NAME OF FACULTY	Dr Meena Kapahi	NAME OF COURSE COORDINATOR	Dr Meena Kapahi

Note: All questions are compulsory. Marks are indicated against each question.

	Q.NO.		QUESTIONS	MA RK S	ADD RESS ED	BLOOM'S LEVEL	PI
	Q1(A)	i. ii. iii. iv.	opulation pyramid, the vertical axis is represents Male population Female population Age groups of population Total number of population	1	CO2	L1	
	Q1(B)	i. ii. iii. iv.	Ozone is a pollutant in the stratosphere. Ozone saves us from UV rays in the stratosphere and is a pollutant in our immediate environment CO ₂ is responsible for stratospheric ozone layer depletion None of the options	1	CO2	L2	
PART-A	Q1(C)	i. ii. iii. iv.	nal pollution is a kind of Water pollution Air pollution Soil pollution None of the above	1	CO2	L1	
	Q1(D)		h statement is correct? A large proportion of children in a population is a result of high life expectancy A large proportion of children in a population is a result of high birth rates A large proportion of children in a population is a result of high replacement level A large proportion of children in a population is a result of high death rates	1	CO2	L2	
	Q1(E)	Whiel i. ii.	h of the following is a renewable source of energy? Ocean currents Solar energy	1	CO2	L1	

In the second			_	r	V ^c	43
		iii. Biomass				
		iv. All of the above				
	Section 201	Which of the following is not a primary pollutant?		CO4		
		i. Oxygen		104		
		ii. Ground-level ozone				
	Q1(F)	iii. Carbon monoxide			-	
		iv. Carbon dioxide				
		TV. Curbon dioxido	1		L2	
		Assertion: Polythene bags and plastic containers are non-	1	CO3	102	
		biodegradable substances.		403		
		Reason: They can be broken down by microorganisms in				
		natural simple harmless substances.				
evil .		i. Both 'A' and 'R' are true and 'R' is correct				j.
		explanation of the Assertion.				
188	Q1(G)	ii. Both 'A' and 'R' are true but 'R' is not correct				
		explanation of the Assertion.				
	m 2 - 1132 "	iii. 'A' is true but 'R' is false.				
To make		iv. 'A' is false but 'R' is true.				
		Select the appropriate choice from the (i) - (iv)				
The state of			1		L1	
Tale Ser		An extensive number of chains interlinked in an ecosystem		CO2		
		forms a:				
		i. Food chain				
	Q1(H)	ii. Food web				
		iii. Carbon cycle				
		iv. Nitrogen cycle				
			1		L1	
		Botanical garden is an example of:		CO2		
		(i) Ex-situ conservation				
	Q1(I)	(ii) In-situ conservation				
		(iii) Both of the above				i i
		(iv) None of the above	1		L2	
		Which of the following is an example of biotic		CO2		
		resource?				
III ISS	Q1(J)	(i) Coal				
	4-0)	(ii) Crude oil				
		(iii) Biogas				
		(iv) All of the above	1_		L2	
2 50310		Briefly explain the structure of an ecosystem. Discuss.				
	Q2		2.5	CO3	L1	
		In order to solve/tackle environmental issues and provide				
P	00	complete solutions, we require a multidisciplinary approach.				
A	Q3	Comment giving suitable examples (at least 2).	5	CO4	L3	
7	04	What are the necessary actions we should take when floods	_	000		
PART-B	Q4	are predicted?	5	CO2	L4	
	OF	What are the effects of thermal pollution? What measures	2+3	200		
	Q5	would you suggest to control water pollution around you?	=5	CO3	L1	
	Q6	Differentiate between species diversity and ecological	2.5	000	1.0	
	Q0	diversity.	2.5	CO3	L2	
2		How does agriculture run-off effect ecosystems? How does	2+3			
T	Q7	this change move through the food web?	=5	CO2	L1	
		<u> </u>				

2	08	What are the course and effects of the late of	_		
	QU	What are the causes and effects of global warming?	5	CO3	L3
		Which of the following according to you is the major cause for loss of biodiversity amongst the four main causes of loss of biodiversity (Habitat loss and fragmentation, alien species invasion, over-exploitation and co-extinctions)? Justify your		E.	
	Q9	pick.	2.5	CO3	L3
	Q10	Explain the ecosystem service. Write any three ecosystem services rendered by the natural ecosystem.	2+3 =5	CO4	L3
	Q11	What can we infer from the population pyramids? Explain.	2.5	CO4	L2

"End Term Examination, Jan-2023"

SEMESTER	I	DATE OF EXAM	16.01.2023
SUBJECT NAME	ATOMIC STRUCTURE & BONDING	SUBJECT CODE	СНН135-Т
BRANCH	Education	SESSION	2022-2023 (I)
TIME	9:00 am to 12:00 noon	MAX. MARKS	80
PROGRAM	B.Sc B.Ed	CREDITS	3
NAME OF FACULTY	Dr. Harsha Devnani	NAME OF COURSE COORDINATOR	Dr. Harsha Devnani

Note: Part A: All questions are compulsory.

Part B: Attempt any three questions.

Ç).NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	The radius of cation is invariably smaller and that of an anion invariably larger than that of the corresponding atom. Why?	4	CO2	BT3	
	1(B)	Define electronegativity, how it is related to electron affinity and ionization energy, why?	4	CO3	BT2,3	
PART-A	1(C)	What are weak interactions and their types?	4	CO4	BT1	
	1(D)	Discuss the effect of lone pair and electro negativity on the shape of the molecule and bond angle?	4	CO2	BT2	2.2
	1(E)	Discuss the major setback of Bohr's theory.	4	CO1	BT1	
PART-B	Q2(A)	Explain the following defects with the help of diagrams: 1. Frenkel Defect 2. Schottky Defect		CO4	BT2	
	2(B)	Discuss the geometry and shape of following molecules as per Valence Shell Electron Pair Repulsion (VSEPR) theory: 1. SF ₄ 2. CLF ₃	10	CO4	BT4	

	What is lattice energy? Derive Born-Lande			
Q3(A)	equation for the lattice energy of an ionic solid.	10	CO4	BT2
	Predict the bond order in C ₂ molecule with the			
3(B)	help of Molecular energy level diagram?	10	CO5	BT3,4
2	Write the electronic configuration of NO	10	- 003	Б13,4
	molecule with the help of molecular orbital			
	diagram and explain:			
	A. What is the bond order of the molecule?			
1250112	B. Will the bond length be shorter or larger			
	than in NO+?			
	C. How many unpaired electrons will be			
04	present in the molecule?			
Q4	D. What will be the bond order in NO-?	20	CO5	BT4
	What is coordination number? Calculate the			
	coordination number of an atom in 1. a body centered cubic unit cell			
even -			uk	
Q5(A)	2. a face centered cubic unit cell	10	C04	מ מינים
Q 3(11)		10	004	BT2,3
	What are semi-conductors? Depict the n-type			1
5(B)	and p-type semiconductors.	10.	CO4	BT2
	Draw neat diagram for NaCl atmost and			
Q6(A)	Draw neat diagram for NaCl structure and explain it.	10	COF	DWO
QU(A)	ехріані іс.	10	C05	BT2
6(B)	Illustrate the VPT treatment of II weeks will	10	COL	Date
U(D)	Illustrate the VBT treatment of H ₂ molecule.	_10	CO5	BT3
	****** END	*****	*****	***

"T3 Examination, Jan-2023"

SEMESTER	I	DATE OF EXAM	21.01.2023
SUBJECT NAME	Essentials of Chemistry	SUBJECT CODE	СНН 105В-Т
BRANCH	Applied Sciences	SESSION	
TIME	9:00 to 12:00 noon	MAX. MARKS	100
PROGRAM	BSc Physics	CREDITS	4
NAME OF FACULTY	Dr. Shilpa Sharma	NAME OF COURSE COORDINATOR	Dr. Shilpa Sharma

Note: All questions are compulsory. Scientific Calculator is allowed

All questions in Part A and Part B are Compulsory

	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
PART-A	1(A)	Define the following: (a) Pauli's Exclusion Principle (b) Aufbau Principle (c) End point (d) Equivalence point	4	C01	BT1
T-A	1(B)	Calculate the CFSE for the following complex: $[CoCl_4]^{2}$	6	C01	BT2
PA	Q2(A)	What is the number of moles of solute in 250 ml of a 0.4M solution.	4	C02	BT2
PART-B	2(B)	Describe Complexometric titration in detail	3	C03	BT2
В	Q3(A)	What designations are given to the orbitals having (i) $n=2$, $l=1$ (ii) $n=2$, $l=0$ (iii) $n=4$, $l=3$ (iv) $n=4$, $l=2$ (v) $n=1$, $l=1$	3	CO1	BT2
	Q4(A)	Estimate the pH at 25°C containing 0.10M sodium acetate and 0.03 M acetic acid.	6	CO4	BT3
PART-C		 (a) Derive the Henderson Hasselbalch equation (b) Estimate the pH at 25°C containing 0.10M sodium acetate and 0.02M acetic acid. pKa for 			
Т-С	Q5(A)	CH₃COOH = 4.57	(6+4 =10)	CO4	BT3
	5(B)	(a) State and Explain Lowry-Bronsted Theory and Lewis Theory of acids and bases. In what way Bronsted different from Arrhenius Theory.	(6+4=10)	CO4	BT3

		(b) Calculate the pH of 0.001M HCl			
	Q6(A)	The solubility of CuBr is found to be 2x 10-4 mol/l at 25°C. calculate Ksp value for CuBr.	6	CO4	вт3
	6(B)	Derive Ostwald's Dilution Law	8	CO4	BT2
	Q7(A)	Define adsorption. Discuss the type of adsorption.	6	C06	BT1
-	7(B)	Define the following with examples: (a) Positive catalyst (b) Negative Catalyst (c) Heterogenous Catalyst (d) Sols	8	CO5	BT1
PART-D	Q8(A)	Discuss Langmuir's theory of adsorption. Deduce an expression for Langmuir's unimolecular adsorption isotherm.	8	C06	BT2
d-'D	8(B)	Write the difference between gels and emulsions. Define Emulsions, its classifications and preparation.	5	C06	ВТ2
	Q9(A)	Discuss the theories catalysis. Illustrate with examples.	8	C05	BT2
	Q9(B)	Discuss Lock and Key theory of Enzyme catalysis.	5	C06	BT2

Department of Chemistry "End Term Examination, Jan 2023"

SEMESTER	I	DATE OF EXAM	21.01.2023
SUBJECT NAME	Analytical Chemistry	SUBJECT CODE	СНН504В
BRANCH	Chemistry	SESSION	I
TIME	3 hrs	MAX. MARKS	100
PROGRAM	M.Sc. Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Pradeep K. Varshney	NAME OF COURSE COORDINATOR	Dr. Pradeep K. Varshney

Note: Attempt all questions.

Part	/Q.No.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PAR	T-A: A	ll the questions are Compulsory.	(4	4x5=20 Mar	ks)	
	Q.1	Why Hyphenated techniques are preferred over conventional techniques. Explain.	4	CO4	BT4	1.4.1, 3.1.1
þ	Q.2	What is the role of reference electrode in Potentiometry? How will you explain equivalence point.	4	CO2	BT4	3.2.2
PART-A	Q.3	What is Bond order? Calculate the bond order of O ₂ , NO ₃ ⁻ and O ₂ ⁻ molecules.	4	CO2	BT3	3.2.2
A	Q.4	How will you define an error ? How can you decide precision and accuracy in your experimental work?	4	CO3	BT3	3.2.3
	Q.5	Which analytical techniques you will use to do quantitative analysis of blood samples. Explain.	4	CO3	BT3	3.1.1
PAR	T-B: A	ll the questions are Compulsory.		(4x5=20 Ma	arks)	0
	Q.6	What are Auger electrons? Which surface chemical analysis is similar to Auger electron spectroscopy. Explain.	4	CO3	BT2	1.4.1, 1.4.3
Ą	Q.7	How Computational Chemistry is useful for us. Write its applications.	4	CO2	BT4	3.2.2
AR	Q.8	Why does only a 'photon' show the photoelectric effect? Justify your answer.	4	CO2	BT2	1.4.1, 1.4.3
PART-B	0.9	Write the name of first instrumental analysis developed by Robert Bunsen and Gustav Kirchhoff and who discovered Analytical Chemistry approach	4	CO1	BT1	1.4.1

	the first time.				
Q:10	X-rays are electromagnetic radiation of higher energy compared to visible light. If you could see X-rays in the same way you can see light would they appear brighter than light? Explain.	4	CO3	вт3	1.4.1, 1.4.3

PART-C: Attempt any three questions. Each question is of 10 Marks. (10x3=30 Marks)

	Q.11	Explain the working principle of atomic emission	10	CO3	BT2	3.1.3,
		spectroscopy using block diagram. How AES is different from AAS. Write demerits of AAS?	1			3.2.2
III			10	004	DT4	212
	Q.12	Briefly describe different types of hyphenated	10	CO4	BT4	3.1.3,
P/		techniques used with mass spectrometry. What				3.2.2
PART		essential requirements must be satisfied in a good				
	10000	interface to the mass spectrometer ? Explain.		200	200	212
	Q.13	What is the Mossbauer Effect? What	10	CO3	BT3	3.1.3,
C		information we can get from Mossbauer spectra.				3.2.2
		Write its applications and demerits.			/	
1	Q.14	Explain the principle of GC-MS with the help of	10	CO3	BT4	3.1.3,
		block diagram. Write limitations of GC-MS. How				3.2.2
		GC-MS is different from LC-MS.			-	

PART-D: Attempt any three questions. Each question is of 10 Marks. (10x3=30 Marks)

PART-D	Q.15	Write Principle, construction, working & applications of SEM. How it is different from TEM and STM?	10	CO3	ВТ3	3.1.3, 3.2.2
T-D	Q,16	Explain with comparison why ICP-OES provides fast and better results as compared to ICP-AES and ICP-MS.	10	CO3	ВТ3	3.1.1, 3.2.2
	Q.17	Wite major differences between OM, SEM and TEM. Which analytical technique is used to study the samples at atomic level. Explain	10	C03	вт3	3.1.1, 3.2.2
	Q 15	If you are working in a pharama company as a Manager. Your manangement has asked to expand company business in other states. What would be your business model to double the profit in next 5 years.	10	CO4	BT5	1.4.1, 3.1.1
	MARKET STATE				(6.)	

357

"End Term Examination, Jan-2023"

SEMESTER	I	DATE OF EXAM	19/01/2023
SUBJECT NAME	Physical Chemistry-I	SUBJECT CODE	CHH501B
BRANCH	M.Sc. (Chemistry)	SESSION	Attack to be and the case of t
TIME	9:00 to 12:00	MAX. MARKS	100
PROGRAM	M.Sc. Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Arpit Sand	NAME OF COURSE COORDINATOR	Dr. Arpit Sand

Note: Note: Part A&B: All questions are compulsory. Questions will be of short answer type.

Part C &D: Questions will be of descriptive type or numerical.

		&D: Questions will be of descriptive type or n QUESTIONS	MARK	CO ADDRESSED	BLOOM'S LEVEL	ΡI
Q.NO. QUESTIONS S ADDR		ADDRESSED				
PA	1(A)	What is meant by mean activity coefficient of a solution? Calculate the ionic strength of a solution prepared by mixing 50 ml 0.2 M KNO ₃ , 20 ml 0.15 M K ₂ SO ₄ , 30 ml 0.05 M Cu(NO ₃) ₂ .	7	CO1	BT2	
PART-A	1(B)	Give an account for Debye Huckel equation for dilute electrolyte solution and deduce its expression.	8	CO1	BT3 BT4	
	1(C)	Discuss Gouy Chapman Diffusion Model 🐟 with figure	2	CO1	вт3	
Р	Q2(A)	Discuss thermodynamics approach to CMC	6	CO2	ВТ3	
PART-B	2(B)	Discuss Electro-osmosis pressure and streaming current with the help of diagram	6	CO2	вт3	
В	2(C)	Write a short note on surface active agents	6	CO2	BT3	
PΑ	Q3(A)	Deduce Expression for time independent Schrodinger wave equation	6	CO3	BT3	
PART-C	3(B)	Proof that $\frac{\partial^2 \emptyset}{\partial \epsilon^2} - 2 \in \frac{\partial \emptyset}{\partial \epsilon} + (\frac{\alpha}{\beta} - 1) = 0$	7	CO3	BT3	
C	Q4(A)	Write a short note on ladder operator	5	CO3	BT3	

	4(B)	Discuss any 5 postulates of quantum chemistry	5	CO3	BT3
	Q5(A)	If \hat{A} and \tilde{E} are the two operators such that $[\hat{A}, \tilde{E}] = 1$ show that $[\hat{A}, \tilde{E}^2] = 2\tilde{E}$	5	CO3	BT3 BT4
	5(B)	Draw energy level diagram 1D Box	5	CO3	вт3
	Q6(A)	Proof that $\langle \Psi \mathbb{H} \Psi \rangle \geq 0$	8	CO4	BT3 BT4
	6(B)	Discuss Rodrigues formula for the Hermit polynomials.	8	CO4	BT3
PART-D	Q7(A)	Write a short note on Huckel approximation in unsaturated molecules	5	CO4	PT4
G-D	7(B)	Discuss application of variation method in one dimensional box	5	CO5	BT3
	7(c)	Discuss application of perturbation method in Perturbed harmonic oscillator	6	C05	BT3
		****** END	*****	******	**

"End Term Examination, Jan-2023"

Pi-			
SEMESTER	I	DATE OF EXAM	16.01.2023
SUBJECT NAME	Inorganic Chemistry-I	SUBJECT CODE	CHH502B
BRANCH	Chemistry	SESSION	l
TIME	9:00 am – 12:00 noon	MAX. MARKS	100
PROGRAM	MSc	CREDITS	4
NAME OF FACULTY	Dr. A. Jayamani	NAME OF COURSE COORDINATOR	Dr. A. Jayemani

	Note: All questions are compulsory.						
(Q.NO.	QUESTIONS	MAR KS	CO ADDRE SSED	BLOO M'S LEVEL	PI	
	1(A)	How CFSE calculations are beneficial in identifying the type of a spinel?	2	CO1	BT3		
	1(B)	Write down the nephelauxetic series of metals	2	COI	BT1		
T-/	1(C)	How to find the Jahn-Teller Stabilization Energy for any complex.	2	CO1	ВТ2		
PART-A	1(D)	Write any two postulate of molecular orbital theory.	2	COI	ВТ3		
	1(E)	Explain why OH ion is having the position before H ₂ O ligand in the spectrochemical series on the basis of MOT.	2	COI	BT1, BT2		
RT-	2(A)	What is spin multiplicity?	2	CO2	BT1		
PART	2(B)	Why do we obtain band instead of sharp peak in electronic spectra of coordination compounds?	2	CO2	BT3		

	2(C)	Based on Orgel diagram, mention the ground state of $[Cu(H_2O)_6]^{2+}$ and $[CuCl_4]^{2-}$ (tetrahedral)	2	CO2	BT3
	 2(D) If a complex is found to have Δ₀/B value of 15 and Racah Parameter B of 400 cm⁻¹, Calculate the magnitude of splitting in Dq. 2(E) 		2	CO2	BT4
		Mention different types of charge transition bands	2	CO2	BT3
	Q3(A)	Write the IUPAC name of the following compound CH ₃ H ₃ C CH ₃ H ₃ C	5	CO3	BT3
	3(B)	Draw the structure of dichlorido(η^6 -p-cymene)[tris(4-methoxyphenyl)propane]ruthenium(II)	5	CO3	B73
7.1	Q4(A)	How organometallic compounds are classified? Give examples for each.	8	CO3	BT!
PART-C	4(B)	The following transformation is an example of R ₃ P R ₄ R ₅ P R ₇ R ₇ R ₇ R ₈ R ₇	2	CO3	B2
	Q5(A)	Explain oxidative addition and reductive elimination reactions of organometallic compounds with examples.	5	CO3	BT4
	5(B)	[CpMoCl ₂] ₂ obeys the 18 electron rule, the correct structure of this compound is (atomic no. of Mo 42)	3	CO3	вт3

		(iii) CI CI (iv) Mo Mo CI CI			,	
	5(C)	Which of the following complex will follow 18-electron rule? $(i)(\eta^5-C_5H_5)Fe(CO)_2$ $(ii) \ (\eta^5-C_5H_5)_2Mo(CO)_3$ $(iii) \ (\eta^5-C_5H_5)_2Re(\eta^6-C_6H_6)$ $(iv) \ (\eta^5-C_5H_5)_2Co$	2	CO3	BT4	
	Q6(A)	Write short notes on σ -bonded and π -bonded organometallic compounds	4	CO3	BT1, BT2	
	6(B)	Draw the mechanism for hydrogenation and hydroformylation reactions using an organometallic catalyst for each.	6	CO3	BT2, BT3	
	Q7(A)	Write short notes on the classification of metal carbonyls based on number of metal atom and based on nature of bonding.	6	CO4	BTI	
	7(B)	Describe in detail about the factors affecting back bonding in metal carbonyls	4	CO4 ·	BT2	
	Q8(A)	How are metal carbonyls prepared? Explain any three methods with reactions	6	CO4	BTI	
PART-D	8(B)	Which of the following provides experimental evidence for π-back donation in a metal carbonyl complex such as [Fe(CO) ₅]? i) The CO molecule has a vacant π* MO. ii) The C-O bonds in the complex are shorter than in free CO. iii) Covalent Fe-C bonds are present in the complex. iv) The wavenumbers corresponding to the C-O stretches in the complex are lower than that for free CO.	2	CO4	BT3	
	8(C)	Which statement is incorrect about CO ligands (i) A CO ligand can accept electron into its π* molecular orbital, this weakens the CO band (ii) CO ligands can adopt terminal, μ and μ³ bonding modes, the amount of backdonation depends on the bonding mode (iii) In IR spectra of Fe(CO) ₅ , the absorptions assigned to M-CO stretching are at higher wavenumber than that of free CO (iv) fluxional behaviour is common in metal carbonyl compounds and can be investigated by ¹³ C NMR spectroscopy	2	CO4	BT3	

Q9(A)	Justify how vibrational spectra helpful in elucidating the structure of metal carbonyls	6	CO4	BT2	
9(B)	If the IR stretching frequencies of complex $[Ni_2(\eta^5-Cp)_2(CO)_2]$ appear at 1857 cm ⁻¹ (s) and 1897 cm ⁻¹ (w), what will be the nature of two M-CO bonds?	4	CO4	BT3	
Q10(A)	Write down the distinct features of phosphine ligands	4	CO4	BT1	
10(B)	Which complex among Ni(CO) ₃ PMe ₃ and Ni(CO) ₃ PF ₃ will have the higher CO stretching frequency? Explain in detail with illustrations for identifying the compound that has stronger M-CO bond?	6	CO4	BT4	

END

DEPARTMENT OF Chemistry

"T3 Examination, Jan 2023"

SEMESTER	T	DATE OF TAXABLE	
	1 -	DATE OF EXAM	13.01.2023
SUBJECT NAME	Organic Chemistry-]	SUBJECT CODE	СНН503В
BRANCH	Chemistry	SESSION	T CHH303B
TIME	3.0 hrs	MAX. MARKS	100
PROGRAM	MSc Chemistry	CREDITS	100
NAME OF FACULTY			
TWINE OF FACULTY	Dr. S.K. Shukla	NAME OF COURSE COORDINATOR	Dr. S.K. Shukla

Why the singlet carbene react with alkenes stereospecifically where as triplet carbene reacted non-stereospecifically. Explain with suitable chemical reaction. Q2 What is the effect of resonance on the stability of carbocation. Expalin with suitable example Q3 Triaryl carbonium ion is more stable than tri alkyl carbonium ion. Explain with its detailed chemical representations. Q4 Explain SNi' mechanism with suitable example Q5 Explain product spread with a suitable example Which of the following compound gives nucleophilic sr'bstitution reaction. Explain with detailed reasoning C1 H ₂ C C1 Q6 Explain the bromination of the benzene with the help of the formation of π-complex formation Why the pyrole favours the attack of electrophile are 2 Why the pyrole favours the attack of electrophile are 2 Why the pyrole favours the attack of electrophile are 2	7.7		COORDINATOR		100.00	olasi oliuk	1
PART Q1 Why the singlet carbene react with alkenes stereospecifically where as triplet carbene reacted non-stereospecifically. Explain with suitable chemical reaction. Q2 What is the effect of resonance on the stability of carbocation. Expalin with suitable example Q3 Triaryl carbonium ion is more stable than tri alkyl carbonium ion. Explain with its detailed chemical representations. Q4 Explain SNi' mechanism with suitable example Q5 Explain product spread with a suitable example Q6 Explain product spread with a suitable example Q7 Which of the following compound gives nucleophilic srbstitution reaction. Explain with detailed reasoning Q8 Explain the bromination of the benzene with the help of the formation of π-complex formation Q8 Explain unimolecular Aromatic neucleophilic substitution radical mechanism Q9 Explain unimolecular Aromatic neucleophilic substitution Q9 Explain unimolecular Aromatic neucleophilic substitution S C03 BT2 1.2.3	IVOI	e: All q	uestions are compulsory.		P	to pit Som	
What is the effect of resonance on the stability of carbocation. Explain with suitable example Q3 What is the effect of resonance on the stability of carbocation. Expalin with suitable example Q3 Triaryl carbonium ion is more stable than tri alkyl carbonium ion. Explain with its detailed chemical representations. Q4 Explain SNi' mechanism with suitable example Q5 Explain product spread with a suitable example Which of the following compound gives nucleophilic srbstitution reaction. Explain with detailed reasoning Q6 C02 BT1 1.2. Which of the following compound gives nucleophilic srbstitution reaction. Explain with detailed reasoning C1 H2 C1 Q8 Explain the bromination of the benzene with the help of the formation of π -complex formation Why the pyrole favours the attack of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism S C03 BT2 1.2.3 Q.9 Write a short note on IPSO substitution		Q.NO.	QUESTIONS	MARKS	eo ADDR	BLOOM'S	
Triaryl carbonium ion is more stable than tri alkyl carbonium ion. Explain with its detailed chemical representations. Q4 Explain SNi' mechanism with suitable example Explain product spread with a suitable example Which of the following compound gives nucleophilic srbstitution reaction. Explain with detailed reasoning C1 H ₂ C C1 (a) Explain the bromination of the benzene with the help of the formation of π -complex formatiom Explain the bromination of the attack of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism Triaryl carbonium ion is more stable than tri alkyl carbonium ion. Explain with its detailed representations. 6 C01 BT4 1.2. C02 BT3 5.1.1 6 C03 BT-2 5.1.1 C03 BT-2 5.1.1 C04 C05 BT-2 5.1.1 C05 BT-2 5.1.1 C07 Formation of π -complex formation of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism 5 C03 BT-2 1.2.3	PAI	Q1	where as triplet carbene reacted non-stereospecifically		CO1	DT4	101
Triaryl carbonium ion is more stable than tri alkyl carbonium ion. Explain with its detailed chemical representations. Q4 Explain SNi' mechanism with suitable example Explain product spread with a suitable example Which of the following compound gives nucleophilic srbstitution reaction. Explain with detailed reasoning C1 H ₂ C C1 (a) Explain the bromination of the benzene with the help of the formation of π -complex formatiom Explain the bromination of the attack of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism Triaryl carbonium ion is more stable than tri alkyl carbonium ion. Explain with its detailed representations. 6 C01 BT4 1.2. C02 BT3 5.1.1 6 C03 BT-2 5.1.1 C03 BT-2 5.1.1 C04 C05 BT-2 5.1.1 C05 BT-2 5.1.1 C07 Formation of π -complex formation of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism 5 C03 BT-2 1.2.3	RT-A	Q2	What is the effect of resonance on the stability of				1.2.1
Explain SNi' mechanism with suitable example Q5 Explain product spread with a suitable example C02 BT1 1.2. Which of the following compound gives nucleophilic substitution reaction. Explain with detailed reasoning C1 H ₂ C C1 (a) (b) FT3 5.1. Explain the bromination of the benzene with the help of the formation of π-complex formatiom Why the pyrole favours the attack of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism Q9 Write a short note on IPSO substitution Write a short note on IPSO substitution			1011. Explain with its detailed chemical representations	6			
PARTIBLE OF Explain product spread with a suitable example Which of the following compound gives nucleophilic substitution reaction. Explain with detailed reasoning C		Q4	Explain SNi' mechanism with suitable example				
Which of the following compound gives nucleophilic si bstitution reaction. Explain with detailed reasoning (a) Explain the bromination of the benzene with the help of the formation of π-complex formatiom Why the pyrole favours the attack of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism 5 C03 BT2 5.1.1 C03 BT4 1.2.3 C03 BT4 1.2.3 C03 BT2 1.2.3		Q5	Explain product spread with a suitable example	6			
Why the pyrole favours the attack of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism O.10 Write a short note on IPSO substitution 6 CO3 BT-2 5.1.1 CO3 BT-2 5.1.1 CO3 BT-2 5.1.1 CO3 BT-2 5.1.1 CO3 BT-2 1.2.3	PART-B	Q6	Which of the following compound gives nucleophilic sibstitution reaction. Explain with detailed reasoning				5.1.1
Why the pyrole favours the attack of electrophile on 2-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution radical mechanism Output Description Explain unimolecular Aromatic neucleophilic substitution Substitution The position over 3-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution The position over 3-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution The position over 3-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution The position over 3-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution The position over 3-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution The position over 3-position over 3-position. Explain unimolecular Aromatic neucleophilic substitution The position over 3-position over 3-position.		Q7	Explain the bromination of the benzene with the help of the formation of π -complex formation	6	CO3	DT 2	54 4
Q.10 Write a short note on IPSO substitution	PART-C	Q.8	postuon over 3-nosmon				
Q.10 Write a short note on IPSO substitution		Q.9	Explain unimolecular Aromatic neucleophilic substitution radical mechanism				
		Q.10	Write a short note on IPSO substitution				

Page 1 of 2

100	1					
		Explain the addition elimination reaction in brief. Which	l			
-33/11		of the following is more facilitated for the nucleophilic aromatic substitution reaction and why?. Explain in detail				
		CI		=		
		Nu-				
		(i) (i)	10	CO3	втз	5.1.1
	Q11	NO ₂				
		C C				
		(ii) Nu				
		NO ₂				
		What will be the product (s) of the following reaction if it undergoes through the phenonian ion formation.				
		and a good a good a good a good and a good and a good and a good a				
	0.40	Br- ?				
	Q.12					
	A STATE OF THE STA	C ₂ H ₅				
		H ₃ C				
		Br Br	6	CO4	BT4	5.1.1
	Q13	Why mustard gas shows its increased toxicity. Explain with the chemical reaction involved.	1			
P/		Define the term neighbouring group participation. Explain	4	CO4	BT3	1.1.1
PART-	Q14	the neighbouring group participation of oxygen through				
3		negative charge acquired by them in alkaline system. Why the Exo-2-norbornyl brosylate gives 350 times faster	8	CO4	BT1	1.2.1
		acetolysis reaction than its corresponding eno product.				
		Explain with detailed mechanism involved in both the reactions				
	0.15	\ \				
	Q.15					
		(a) OBs (b)				
		H OBs				
		Exo-2-norbornyl brosylate Endo-2-norbornyl brosylate	8	CO4	BT4	5.1.1
	Q.16	Why the neopentyltosylate gives cyclic product along with rearranged product in solvolysis reaction. Explain with	ă)			
		detailed mechanism	6	CO4	BT3	5.1.1
		******** END ******	****			5.1.1

DEPARTMENT OF Chemistry

"T3 Examination, Jan2023"

SEMESTER	I	DATE OF EXAM	13.01.2023
SUBJECT NAME	Green Chemistry	SUBJECT CODE	CHH101B-T
BRANCH	Chemistry	SESSION	I
TIME	3.0 hrs	MAX. MARKS	100
PROGRAM	BSc(H) Chemistry	CREDITS	4
NAME OF FACULTY	Dr. S.K. Shukla	NAME OF COURSE COORDINATOR	Dr. S.K. Shukla

Note: All questions are compulsory.

	Q.NO.	QUESTIONS	MARK S	ADDR ESSED	BLOOM'	PI
PART-A	Q1	0.8 grams of butanol reacts with 1.5 g of sodium bromide and 2.5 g of sulphuric acid to yield 12 g of butyl bromide. Calculate the % yield, atom economy. CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH + NaBr + H ₂ SO ₄ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ Br + NaHSO ₄ + H ₂ O	6	CO1	BT3	5.1.1
T-A	Q2	What is E factor? Calculate the E-factor of a reaction where 30 grams of substrate is reacted with 28 grams of the reagent resulting the 41 grams product formation.	5	CO1	BT3	1.1.1
	Q3	Write a detailed note on Green chemistry Principle 9# Catalysis with a suitable example	6	CO1	BT2	5.1.1
PART-B	Q4	Write a note on: (i) Biodegradable polymer (ii) Particulate composites	8	CO2	BT1	1.2.1
·B	Q5	Explain the constituent of the composites in detail	10	CO2	BT4	1.2.1
PART-C	Q6	A water sample was alkaline for both phenolphthalein and methyl orange. 50 ml of this water sample requires 20 ml of N/50 H ₂ SO ₄ for phenolphthalein end point and another 20 ml for complete neutralization. Calculate type and amount of alkalinity present	6	CO3	ВТ3	1.2.2
	Q7	Define term hardness. How to determine hardness by EDTA method (Explain theory, procedure and general calculation)	10	CO3	BT2	5.1.1

	Q8	Explain Carbon di oxide phase diagram with suitable diagram and explain the areas, curves and points. Give the difference between water and carbon di oxide phase diagram (at least three)	9	C03	ВТ3	5.1.1
	Q9	Explained the detailed green synthesis of: (i) Ibuprofen (ii) Sebasic Acid	8	C03	BT4	5.1.1
	Q10	Write a note on the green initiatives taken in Indian industrial prospects with an example	6	CO4	BT1	1.1.1
PART-D	Q11	Discuss Green Engineering Principle with suitable examples: (i) Output pulled rather than input pulled (ii) Maximize efficiency	10	CO4	BT3	5.1.1
Ū-,	Q12	What do you mean by Functional of system substitution? Explain by giving suitable example	6	CO4	BT4	1.1.1
	Q13	Write a note on: (i) Energy efficient computing (ii) Carbon free computing	10	CO4	BT2	1.2.1
		**************************************	****	****		

"End Term Examination, Jan-2023"

SEMESTER	I	DATE OF EXAM	21.01.2023
SUBJECT NAME	CHEMISTRY-I	SUBJECT CODE	СНН144Т
BRANCH	ECE/NSS/CDA/CSTI/AIML/SMA/ECE- VLSI	SESSION	I
TIME	3 hrs	MAX. MARKS	100
PROGRAM	B.Tech	CREDITS	4
NAME OF FACULTY	Dr. Harsha Devnani, Dr. Jaya Tuteja, Dr. Arpit Sand and Dr. A. Jaymani	NAME OF COURSE COORDINATOR	Dr. A. Jayamani

Note: Part A: All questions are compulsory.

Part B & Part C: Attempt any two questions.

Q.NC).	QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	PI
	1(A)	Differentiate polarization and polarizability?	5	CO1	BT2	
PART-A	1(B)	What are the three rules of the Aufbau principle and state its limitations?	5	CO3	BT1	
para]	1(C)	Explain disinfection process of water?	4	CO3	BT2, BT1	
A	1(D)	What are the two theories of corrosion? Explain with suitable examples?	6	CO1	BT1, BT2	
	Q2(A)	Discuss conformation analysis of n butane and energy level diagram of for rotation in C_2 - C_3 ?	10	со	BT2, BT3	
	2(B)	With the help of suitable examples differentiate between enantiomers and diastereomers?	5	CO1	BT2, BT3	
~5	2 (C)	Discuss absolute confirmation and rule involved for confirmation?	5	CO4	втз	
PART-B	Q3(A)	Discuss synthesis of Aspirin by conventional and green chemistry method?	5 + 5	CO5	вт3	
	3(B)	Explain Green Chemistry Principle # 1Waste Prevention and Green Chemistry Principle # 3 Less Hazardous Chemical Syntheses:	5 + 5	CO5	BT2	
	Q4(A)	Explain the below: (i) Linkage Isomers (ii) Coordination Isomers (iii) Ionization isomers	3*5	CO4	BT2, BT3	

		(iv) Geometrical Isomers (v) Solvate isomers	â		
	4(B)	What are three purposes of green chemistry?	5	CO5	BT2
	Q5(A)	State Beer's and Lambert's law, explant the terms involved in Lambert-Beer's law? Discuss the instrumentation of Electronic spectroscopy?	5+5	CO6	BT4
	5(B)	Write a short note on electromagnetic spectrum and write the relationship between wavelength, frequency and wave number?	5+5	C06	BT4
	Q6(A)	What are the selection rules (I) Electronic Spectroscopy (II) Rotational and vibrational Spectroscopy	5+5	C06	BT2
PART-C	(B)	What is phosphorescence and fluorescence? How they are different from each other, Discuss with the help of jablonskii diagram?	10	CO6	BT3
'-C	Q7(A)	Define the term chemical shift in NMR spectroscopy and describe the factors which influence it?	10	CO6	BT4
	(B)	What is the principle of NMR spectroscopy, write its application?	5	C06	BT3
	(C)	Predict the number of signals in the following compounds? $CH_3CH_2NH_2 \\ H_2C-CH_2 \\ H_2\dot{C}-\dot{C}H_2 \\ H_2\dot{C}-\dot{C}H_2$	2.5 *2=5	C06	BT4
		***** ÉND **	*****	*****	

DEPARTMENT OF CHEMISTRY End term Examination January 2023

SEMESTER	I st	DATE OF EXAM	1,3-01-2023
SUBJECT NAME	Environmental Sciences	SUBJECT CODE	СНН137
BRANCH	B.Tech CSE	SESSION	I
TIME	09:00 AM to 11:00 AM	MAX. MARKS	50
PROGRAM	B.Tech CSE	CREDITS	4
NAME OF FACULTY	Dr. V. V. Pathak	NAME OF COURSE COORDINATOR	Dr Meena Kapahi

Note: All questions are compulsory. Marks are indicated against each question.

	Q.NO.	QUESTIONS	MA RK S	CO ADD RESS ED	BLOOM'S LEVEL	PI
	Q1(A)	Removal of top soil is also termed as: (i) Soil degradation (ii) Soil erosion (iii) Soil formation (iv) Precipitation	1	CO1	L2	
	Q1(B)	Which of the following sector contribute maximum share in total renewable energy generation? (i) Solar energy (ii) Wind Energy (iii) Biomass Energy (iv) Tidal energy	1	CO1	L2	
PART-A	Q1(C)	The ozone-oxygen cycle in stratosphere is also termed as: (i) Gaseous cycle (ii) Chapman cycle (iii) Sedimentary cycle (iv) Oxygen cycle	1	CO1	L1	
	Q1(D)	Acid rain is composed of: (i) Water vapor + CO ₂ + NO ₂ (ii) SO ₂ + NO ₂ + Water vapor (iii) Hydrocarbon + Water vapor (iv) All of the above	1	CO1	L2	
	Q1(E)	Who is called the father of green revolution in India? (i) Norman Borlaug (ii) Rachel Carson (iii) KR Narayanam (iv) M.S. Swaminathan	1	CO1	L1	

2°		The place where an living organism is provided with suitable life sustaining condition is known as:		C02		
	Q1(F)	(i) Habitat (ii) Ecosystem (iii) Niche				
		(iv) Environment	1		L1	
	Q1(G)	Which of the following belongs to the edaphic factors of ecosystem? (i) Soil & Minerals (ii) Rainfall (iii) Temperature (iv) All of the above	1	CO2	L1	
	Q1(H)	Landform features found on the earth surface is termed as: (i) Lithosphere (ii) Landscape (iii) Hydrosphere (iv) None of the above	1	CO2	L1	
	Q1(I)	Which of the following statement is true with respect to desert ecosystem? (i) It is the place with moderate rainfall (ii) It is the driest and hottest place on the earth. (iii) Soil type is uniform throughout the desert ecosystem. (iv) Broad leaf trees are the main features of desert ecosystem.	1	CO2	L2	
	Q1(J)	Detritus food chain begins with: (i) Dead organic matter (ii) Green Plants (iii) Secondary consumers (iv) Tertiary consumer	1	CO2	L2	
		Match the items of column A with those of column B:			n I	
P/		column A column B (a) Carbon dioxide (i) Reduced oxygen supply in blood (b) Chlorofluorocarbon (ii) Green house gas (c) Carbon monoxide (iii) Damage ozone layer (d) Sulphur dioxide (iv) Acid rain				
R	Q2		2	CO3	L2	
PART-B	Q3	Fill correct/appropriate term: (i) are the large open area used to dispose splid waste. (ii) Domestic waste is commonly called as (iii)is the process of burning of hazardous waste under controlled air supply.	3	CO4	L3	
	Q4	What is water pollution? Explain the source, impact and control methods for water pollution.	5	CO2	L2	

or s	Q5	What do you understand by endemic, invasive and exotic species? Explain in-situ and ex-situ biodiversity conservation methods.	5	CO3	L1	
	Q6	Define 'Hazard' and Natural disaster'. Explain disaster preparedness for earthquake.	5	CO4	L2	
PAR	Q7	 Mention whether the given statement is true or false: (a) Group of individual of same species is termed as population. (b) Maximum reproduction capacity of an organism under optimum condition is known as fertility. (c) COVID 19 disease is mainly spread by contaminated water. (d) Water vapor is the earth's most abundant green house gas. 	4	CO3	L2, L3	
PART-C	Q8	Write Short notes on following: (i) Rainwater Harvesting (ii) Infectious disease (iii) Population pyramid	6	C03	L3	a)
	Q9	What do you understand by population explosion? Explain the adverse impacts of population growth.	5	CO4, CO5	L3, L4	
	Q10	How sustainable development is useful in environmental conservation?	5	CO4	L3	

"T3 Examination, Dec-2022"

SEMESTER	III	DATE OF EXAM	12.12.2022
SUBJECT NAME	Organic Chemistry-I	SUBJECT CODE	СНН237-Т
BRANCH	Education	SESSION	I
TIME	9:00 to 12:00	MAX. MARKS	80
PROGRAM	BSc BEd	CREDITS	3
NAME OF FACULTY	Dr. Shilpa Sharma	NAME OF COURSE COORDINATOR	Dr. Shilpa Sharma
ote: All question	s are compulsory.		Aro Pit Sand

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
PART-A	1(A)	The specific rotation of pure (R)-2-butanol is -13.5°. What % of a mixture of the two enantiomeric forms is (S)-2-butanol if the specific rotation of this mixture is -5.4°?	4	CO1	BT3
Α	1(B)	Write the confirmation of n-butane and discuss their relative stability	6	CO1	BT2
	Q2(A)	Explain the following (i) Photochemical [2+2] cycloaddition reaction (ii) Diels-Alder reaction [4+2] cycloaddition	3	CO2	BT2
PART-B	2(B)	As the number of carbons in cycloalkanes increases the stability increases but the reactivity decreases. Justify with an example	2	C02	BT2
Г-В	Q3(A)	Discuss the Position and Chain Isomerism	2	CO1	BT1
	3(B)	Explain the Markownikov's Rule	3	C02	BT2

PERSONAL PROPERTY.	1/4/4888/888	D.C. W. L. D. L. Classif the Cillegian late.	ī	Ĩ	î î
*		Define Huckel Rule. Classify the following into			
Z		aromatic and non-aromatic on the basis of huckle			
		rule			
		(a) (c)		_	
	0.4643			600	DEC
7	Q4(A)		8	CO3	BT3
A		Explain that electron withdrawing groups on			
R	OF(A)	benzene direct the incoming electrophile to meta position. Why Chlorine behaves differently.	5	C03	BT1
Ţ.	Q5(A)	Briefly explain the Energy Profile diagram for	5	003	DII
0	Resident Control	aromatic electrophilic substitution (both sigma			
(Isaa)	5(B)	and pie bond)	6	CO3	BT2
	3(D)	and pie bond)		203	DIZ
		What are activating groups. How does activating			
HER.	Q6(A)	group affects the reactivity	5	CO3	BT2
PART-D PART-D	2 84				
	((D)	Why certain groups are preferentially ortho-para		coa	BT2
Technin	6(B)	directing while others are mainly meta directing.	6	C03	D12
		How do the product differ when ethyl bromide reacts separately with aqueous KOH and alc.			
Passill.		KOH. Illustrate your answer with proper			
TE COLE	07(4)	reasoning	6	CO4	BT2
	Q7(A)	Answer the following questions: (i) What is the	0	COT	DIZ
		general rate equation (ii) What happens to the			
		rate of the reaction if the concentration of			
		nucleophile is increased by a factor of 3? (iii)			
		What happens to the rate of the reaction if the			
		concentration of both nucleophile and			
		electrophile are increased by a factor of 3 (iv) If			
		it is desired to increase the rate of a reaction by			
Harris N	1000	a factor of 8, but the concentration of			1
		nucleophile can only be increased by a factor of			
70		2, what would the concentration of electrophile			
=	7(B)	need to be?	8	CO4	BT3
		Show the major organic Product (with			
<u> </u>		mechanism) for the following reactions:			
		OH.			1
		50°C			
2					
			1		
		or			
		Write the reactant molecule required for the			
19		following reaction to complete (Also, Name the			
		mechanism involved)			
		NaOCH2CH3			
		A EtOH			
	Q8(A)		5	CO4	BT2
	QU(II)	Which of the following alkyl halides would you			
		• • • • • • • • • • • • • • • • • • • •			
	O(D)	expect to undergo SN1 reaction most rapidly.	2	COA	מדים
ke hill	8(B)	and Why?	3	CO4	BT3

		CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -Br	CH ₃ CH ₂ CH ₂ CH-Br CH ₃	CH₃ CH₃CH₂C−Br CH₃			
· Marina		(A)	(B)	(C)			
de la		Give the missin	g reagents and	structures:			
		\bigcirc	\xrightarrow{A} B \xrightarrow{C}				
			A B C	~~ <u>\</u>			
	Q9(A)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A B C		8	CO4	BT4

END TERM Examination, DEC-2022

SEMESTER IIIRD DATE OF EXAM 15.12.2022
SUBJECT NAME Environmental Sciences SUBJECT CODE CHH137
BRANCH BA/HCM/OM/EFB/FAA SESSION I

TIME 09:00 AM-11:00 AM MAX. MARKS 50

RRA CREDITS 4

PROGRAM

BBA

CREDITS

4

NAME OF COURSE Dr. (1)

NAME OF COULTY

NAME OF COUCTON

COORDINATOR

Q.ľ	NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	Pi
	1(A)	Which of the following is the coldest region of earth's atmosphere? (i) Stratosphere (ii) Mesosphere (iii) lonosphere	1	CO1	L1	
	1(B)	(iv) Troposphere Flowing water bodies are also referred as: (i) Lentic ecosystem (ii) Lotic ecosystem (iii) Pond ecosystem (iv) None of the above	1	C01	<u>L1</u>	
PA	1(C)	A watershed is also called as: (i)Drainage basin (ii) Catchment area (iii) Independent drainage unit (iv) All of the above	1	C01	1.1	
PART-A	1(D)	Forest cover in India is about: (i) 21.7% (ii) 33% (iii) 40% (iv) 20%	1	CO1	<u>L1</u>	
	1(E)	Which of the folloing is an example of biotic resource: (i) Coal (ii) Crude oil (iii) Natural Gas (iv) All of the above	1	CO1	<u>L1</u>	
	1(F)	Which of the following is an example of renewable energy? (i) Wind energy (ii) Tidal energy (iii) Solar Energy (iv) All of the above	1	CO2	L1	

			10		
		Soil erosion that forms small channel is			
		termed as:			
	1(C)	(i) Rill erosion			
	1(G)	(ii) Wind erosion			
		(iii) Gully erosion		222	1.1
		(iv) Ephemeral erosion	1	CO2	L1
		Crop rotation is useful for prevention of:	1		
		(i)wasteland degradation			
	1(H)	(ii) soil erosion			
		(iii)climate change			
		(iv) Air pollution	1	CO2	L1
		Which of the following is an example of			
		secondary air pollutant?			
	4.00	(i)Ozone			
	1(I)	(ii)Carbon dioxide			
		(iii) Nitrogen dioxide			
		(iv)Sulphur dioxide	1	CO2	L1
		Which of the following method is used for			
		disposal of hazardous waste?			
	1(1)	(i)Vermi-composting			
1	1(J)	(ii)Anaerobic digestion			
T.		(iii)Incineration			
		(iv)Recycling	1	CO3	L1
		Differentiate between the followings with			111
		examples:			
		(a) Genetic and Species diversity			
<u>ס</u>		(b) Primary and secondary ecological	_	CO4	L1
PART-B	Q2.	succession	5	C04	L1
- June		Define the term 'ecosystem'. Explain the biotic			
Section 2		and abiotic component of ecosystem with	_	CO3, CO4	L2, L3
- W	Q.3.	examples.	5	003,004	LZ, LO
1		Explain the cause, impacts and control			
1	Q.4.	measures for water pollution.	10	C03	L3
	Q.T.				
	1	What is solid waste management? Explain the			
	Q.5	three 'R' of solid waste management.	5	CO5	L3
PART-C		What do you understand by remote sensing?			
7		Explain the application of remote sensing in		225	
	Q.6	environmental management.	10	CO5	L3
		What do you understand by global warming?			× 1
1 -	Ĭ	What are sustainable solutions for global	_	COF	1.2
	Q.7.	warming?	5	CO5	L3
	30 S				A THE RESIDENCE OF THE PARTY OF

"T3 Examination, Dec-2022"

SEMESTER	3rd	DATE OF EXAM	17.12.2022
SUBJECT NAME	Photochemistry & Pericyclic Reaction	SUBJECT CODE	СНН614-В
BRANCH	Chemistry	SESSION	Morning
TIME	3 hrs	MAX. MARKS	100
PROGRAM	MSc	CREDITS	4
NAME OF FACULTY	Sangita Banga	NAME OF COURSE COORDINATOR	Sangita Banga

Note: Part A: Each question is of 10 marks, attempt any two of three.

Part B: Each question will be of 20 marks and attempt any four from Part B.

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Cyclobutanone on a Cleavage undergo ring expansion with retention on stereochemistry. Explain the condition for the retention of stereochemistry with the support of example.	2	CO2	BT3	2.1.1
	1(B)	Trans isomer are geometrically more stable then why the ratio of Cis-isomer would always be higher than Trans in mixture on irradiation	2	CO2	BT2	2.1.1
PART-A	1(C)	 Give reason for your answer with suitable example, wherever applicable (i) α Cleavage of cyclobutanone is 10 times more efficient as compared to cyclopentanone. (ii) Photoenolization is favored by ortho not para substituted aryl ketones 	3	CO2	BT1	5.1.1
Α	1(D)	Discuss the mechanism of 1, 2 alkyl shift in substituted aromatics by Prismane Intermediate.	3	CO2	BT2	5.1.1
	2(A)	Explain the mechanism of dimerization of 1,3-butadiene in solution in the presence of acetophenone and benzil sensitiser	2.5	CO2	вт2	2.1.1
	2(B)	What is meant by conrotatory & disrotatory movement? Explain with example.	2.5	CO2	BT2	5.1.1
	2(C)	How pericyclic reaction differs from normal reaction. Give some important characteristics of	2.5	CO4	BT1	1.1.1

		pericyclic reaction.				
	2(D)	reaction.	2.5	CO2	BT2	2.1.1
	3(A)	Suggest mechanism for the reaction given below 2006	2.5	CO2	BT3	1.1.1
	3(B)	Complete the reactions: (i) $+ + + + + + + + + + + + + + + + + + +$	2.5X3	C03, C04	ВТЗ	9.1.2, 11.2.1
	Q4(A)	[1,5] Sigmatropic shift of hydrogen is thermally allowed but photochemically forbidden. Explain why?	5	CO4	BT3	5.1.1
	4(B)	Write a note on the following: (i) Cope rearrangement (ii) Claisen rearrangement	5	CO4	BT3	2.2.1
PART-B	4 (C)	From the given product explain the detailed mechanism through which the reaction is carried out and mention the sigmatropic shift: (i) (ii) (iii) (iii) (iii) (iii) (iii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiii) (iiiii) (iiiiiiii	5X2	CO4	BT4	9.1.2, 10.3.1

	$\begin{array}{ccc} CH - CH = CH - CH = GH_2 & CH = CH - CH = CH - CH = GH_2 \\ (iv) & CH - OD & \Rightarrow & CH = O \end{array}$	CH2			
		7			
Q5(A)	With the help of FMO show that [2+2] cycloaddition reaction is photochemically allowed and thermally forbidden.	5	CO4	BT3	2
5(B)	Give the mechanism of Cheleotropic reaction between alkene and carbine. Discuss the stereospecificity of the product.	5	CO4	ВТ3	2
5(C)	Predict whether the [4+2] cycloaddition could be photoinduced if the dienophile, instead of diene were the excited reactants. Explain your answer.	5	CO2, CO4	BT4	2
5(D)	The reaction of compound (A) with base gives molecule (B) which undergoes [2+2] cycloaddition reaction with cyclopentadiene to give two different products. Identify the products formed in the reaction with the help of proper movement of bonds and arrows.	5	CO2, CO4	BT5	2 10
Q6(A)	Complete the reaction given below& give proper explanation for your answer. B A A B A A B A A B A B A B A B A B B	5	CO2, CO4	BT4	2.
6(B)	Which of the following electrocyclic reaction should occur readily by concerted mechanism: (i) \triangle (ii) \triangle (iii) 1,3,5-Cyclononaturene	5	CO2, CO4	ВТ3	2.2

	What type of cycloaddition occurs in Reaction [1]? Draw the product of a similar process I Reaction [2]. Would you predict that these reactions occur under thermal or photochemical conditions?				
6(C)	$\begin{array}{c} C_6H_5 \\ \end{array}$	5	CO2, CO4	BT4	2.2.1, 10.3.1
	C ₆ H ₅				
6(D)	How would you carry out conversion of cis 3,4-dimethyl cyclobutene to trans 3,4-dimethyl cyclobutene? Explain & give mechanism.	5	CO2 &CO3	BT5	2.1.2
Q7(A)	Draw & explain the correlation diagram for the conrotatory & disrotatory interconversion of cyclobutene -butadiene system.	5	CO2, CO4	BT3	2.4.2
7(B)	With the help of FMO approach, explain whether the following reaction will be allowed thermally or photochemically.	5	CO4	BT4	2.3.1
7(C)	Write the products of following electrocyclic reactions & write whether the reaction will proceed in conrotatory or disrotatory fashion. Also give the stereochemistry of the products.	2.5X4	CO4, CO3	BT4	2.3.1, 10.3.1

	(ii) hh chy				#1
	(iv) (iv) (iv) (iv) (iv) (iv) (iv) (iv) (iv)	=			
Q8(A)	In case of ring closure reaction of 1,3-butadiene, explain the selection rules by Huckle Mobius method & Woodward Hoffmann Rule.	5	CO4	BT3	2.4
8(B)	Complete the reaction given below and explain the mechanism for the formation of product. Also mention which name reaction it is known as. hv Ph	5	CO2	BT4	2.1
8(C)	Give reason for the formation of Endo product as main product with the help of suitable example.	2.5	CO2	BT2	2.1.
8(D)	Reactivity of Diels Alder reaction increases by introduction of electron withdrawing substituent in dienophile. Give reason for your answer through an example.	2.5	CO2	BT2	2.1.:
8(E)	Predict the missing reactant/ product formed in the given reaction: NH + COOEt hv COOEt hv	2.5X2	CO3 & CO4	ВТ3	2.2.1

End Tum Examination, Dec-2022"

SEMESTER	III	DATE OF EXAM	15.12.2022
SUBJECT NAME	Modern Organic Synthetic Techniques	SUBJECT CODE	СНН615В
BRANCH	Chemistry	SESSION	2022-2023 (I)
TIME	09:00 - 12:00	MAX. MARKS	100
PROGRAM	M.Sc Chemistry (organic)	CREDITS	4
NAME OF FACULTY	Dr. Jaya Tuteja	NAME OF COURSE COORDINATOR	Dr. Jaya Tuteja

Note: All Questions are compulsory

	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	i PI
PART-A	Q1(a)	How biaryl product is synthesized?	3	CO1	BT4	1.3.2
	Q1(b)	State 2 coupling reaction with suitable examples?	4	CO2	BT2	1.3.2
	Q1(c)	Discuss the reduction of carbonyl with hydride transfer reagents?	3	CO1	BT3	1.3.2
PART-B	Q2(a)	Illustrate a method to oxidize C level 3 to C level 4?	3	CO3	BT2	1.3.2
	Q2(b)	Evaluate the 2 best methods for synthesizing selectively aldehyde from primary alcohols?	4	CO3	BT4	1.3.2
	Q2(c)	Write a note on wolf kishner reduction reaction?	3	CO3	BT4	1.3.2
PART- C	Q3(a)	What is the order of nucleophilicity of Enol Enolate and Enamine, and why?	3	CO4	BT3	1.3.2
	Q3(b)	Under which condition KMnO ₄ is soluble in benzene?	3	CO5	BT2	1.3.2
	Q3(c)	How can you differentiate the kinetically stable and thermodynamically stable enols?	4	CO5	BT4	1.3.2
	Q4(a)	Draw the mechanism for the reaction of sulphur ylide with α , β -unsaturated aldehydes and ketones?	5	CO5	BT3	1.3.2
	Q4(b)	Can alkene be synthesized with high regioselectivity & stereoselectivity, if yes, How?	5	CO5	BT4	1.3.2
	Q5(a)	Discuss the stabilized and unstabilized P ylides with suitable example and propose the application of P ylides in organic synthesis?	5	CO5	BT3	1.3.2

	Q5(b)	Illustrate the advantages of polymer supported reagents, their types and their properties?	5	CO5	BT2	1.3.2
	Q6(a)	What are the types of phase-transfer catalyst, Explain in detail?	5	CO5	BT3	1.3.2
	Q6(b)	Explain the Starks extraction and Makosza Interfacial mechanism for phase transfer catalysis?	5	CO5	BT4	1.3.2
PART-D	Q7(a)	Discuss the role of functional group interconversion (FGI) in reterosynthesis with suitable examples?	5	C06	BT3	1.3.2
	Q7(b)	Examine 1,1- 1,2- C-X Disconnections in detail with suitable examples?	5	C06	BT2	1.3.2
	Q8(a)	Discuss the importance of the orders of events in organic synthesis?	5	C06	BT4	1.3.2
	Q8(b)	What is The "Retro" Diels-Alder Reaction, Explain with suitable example?	5	C06	BT4	1.3.2
	Q9(a)	Which combination of reagents is wrong for disconnections (a)-(d) in the following? Ph (a) (b) (c) (d) (b) (c) (d) (c) Ph (d) Ph (d) Ph (e) Ph (d) Ph (e) Ph (f) Ph (f) Ph (g) Ph (g) Ph (h) Ph	4	CO6	BT2	1.3.2
	Q9(b)	Propose a retrosynthetic analysis of the following compound. Your answer should include both the synthons, showing your thinking, and the reagents that would be employed in the actual synthesis.	8	CO6	BT5	1.3.2

E L	A STATE	How would you	make these compo	ounds?	8	C06	BT5	1.3.2
	Q10	O H	OH	CO ₂ H				
			*****	*END***	****			

"End Semester Examination, Dec-2022"

Ш	DATE OF EXAM	12.12.2022
Symmetry and Group Theory	SUBJECT CODE	СНН601В
M.Sc Chemistry	SESSION	2022-2023 (I)
180 mins	MAX. MARKS	100
M.Sc Chemistry III sem	CREDITS	4
Dr. Roopa Rani	NAME OF COURSE COORDINATOR	Dr. Roopa Rani
	Symmetry and Group Theory M.Sc Chemistry 180 mins M.Sc Chemistry III sem	Symmetry and Group Theory M.Sc Chemistry SESSION 180 mins MAX. MARKS M.Sc Chemistry III sem CREDITS NAME OF COURSE

Note: Attempt all questions

Q.NO.	Attempt all questions QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	Part A				1
Q1	Using the symmetry elements of C_{2v} point group, confirm that they follow the four mandatory conditions of a group.	4	CO1	3	
Q2	Determine the point group of the following molecules- a) CO ₂ b) Staggered Ferrocene c) Trans H ₂ O ₂	6	CO1	3,2	
Q3	Reduce the following representations into irreducible representations referring to the character table of C _{2v} point group E 2C ₃ 3C ₂ σ _h 2S ₃ 3σ _v a) 6 -2 2 2 -6 -2 b) 4 1 -2 -2 1 0	4	CO1	2	
Q4	Generate any two normalized wavefunction for the molecule of BF_3 through symmetry adapted linear combination. (Use the character table of D_{3h})		CO2	4	
	PART B			1	-
Q5	Explain the orgel diagram for D and F term splitting with the configuration of d ² , d ⁸ , d ³ , d ⁷ tetrahedral and octahedral geometry.	5	CO3	5	

Character tables

Character table for C2v point group

	E	C ₂ (z)	σ _v (xz)	σ _τ (yz)	linear, rotations	quadratic
A_1	1	1	1	1	Z	x^2 , y^2 , z^2
A_2	1	1	-1	-1	R ₂	xy
B_1	1	-1	1	-1	x, Ry	xz
B ₂	1	-1	-1	1	y, R _x	yz

Character table for T_d point group

	E	8C ₃	3C ₂	6S ₄	6σ _d	linear, rotations	quadratic
A_1	1	1	1	1	1		
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		(z^2, x^2-y^2)
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

Character Table of D_{3h} point group

D 3 h	E	2C ₃	3 <i>C</i> ₂	σ_{h}	2 <i>S</i> ₃	$3\sigma_{\nu}$		
$\overline{A_1}'$	1	1	1	1	1	ı		$x^2 + y^2, z^2$
A2'	1	1	-1	1	-1	- i	$\begin{pmatrix} R_x \\ (x, y) \end{pmatrix}$	(x^2-y^2,xy)
E'	í	- I 1	1	$-\frac{1}{1}$	_i	-1	(4,))	
A_2^{π}	1	1	-1	-1	-1	1	=	
E"	2	-1	0	2	1	0	(R_x, R_r)	(xz, yz)

"T3 Examination, December-2022"

SEMESTER	III	DATE OF EXAM	9.12.2022
SUBJECT NAME	Organic Special-I: Statistical Stereochemistry & Asymmetric Synthesis	SUBJECT CODE	СНН 613В
BRANCH	CHEMISTRY	SESSION	I
TIME	9:00 a.m. to 12 noon	MAX. MARKS	100
PROGRAM	M.Sc. Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Ekta Rawat	NAME OF COURSE COORDINATOR	Dr. Ekta Rawat

Note: All auestions are compulsory.

	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
PART-A	1(A)	Classify the absolute configuration of all chiral centers as R or S in the molecules below. H ₃ C _{IIII} H Cl H H LIMIT	2+2=4	CO1	BT3
T-A	1(B)	Which of the following compounds will show geometrical isomerism: (i) CH ₃ H ₃ C OH HO	4	CO1	BT3

				T.	1 3
		(ii) NH=NH			
	1(C)	Write a short note on diastereomeric excess?	2	CO2	BT2
PAI	Q2(A)	What are ANSA Compounds? Assign absolute configuration to following ANSA compounds: Br	4	CO2	BT2,BT3
PART-B	2(B)	Find out the relation between the given pair of compounds: COOH COOH HO COOH And COOH COO	4	CO2	BT4
	2(C)	Name the relative member of amino acids and carbohydrates while assigning relative configuration?	2	CO2	BT2
PART-C	Q3(A)	Indicate if the hydrogens marked Ha and Hb are homotopic, enantiotopic or diastereotopic, in the following compounds: Ha Hb Hb	6	CO3	BT3, BT4

vi.			64			and to
		CI Hb CI H H H H H H H H H H H H H H H H H H				
	3(B)	What controls the stereochemistry of this product? You are advised to draw a mechanism first and then assign the absolute configuration to the product.				White State of the
	3(1)	C ₂ H ₅ CH ₃ (i) NaBH ₄ (ii) H ₃ O ⁺	10	CO3	BT3, BT4	
	3(C)	Differentiate between stereoselective and stereospecific reactions?	4	CO3	BT2	
	4(A)	Assign prochirality w.r.t. to 'Ha' Pro R/Pro S to the following compounds: COOH Ha Ha Ha HH HA CI Br				
		H	6	CO3	BT3, BT4	-
	4(B)	What do you mean by stereoselectivity of a reaction? Prelog's rule is used to introduce enantiontioselectivity in a reaction. Explain?	10	CO3	BT3, BT4	
	4(C)	Depict the two faces of benzophenone as Re and Si.	4	CO3	BT3	
PART-D	Q5(A)	How Ender's asymmetric α-alkylation of hydrazones of aldehydes and ketones helps in attaining the enantioselectivity in a reaction?	8	CO4	BT3, BT4	
T-D	5(B)	Why enzymes are considered as best tool for asymmetric synthesis? Give three examples.	6	CO4	BT3, BT4	

5(C)	How is Jacobsen's precatalyst and catalyst synthesized using (R,R)-cyclohexane-1,2-diamine?	6	CO4	BT3, BT4
Q6(A)	Discuss the role of bulky achiral auxillary in α-alkylation of amino acids via imidazolidinones.	8	CO4	BT3, BT4
6(B)	Draw any three modified ligands used to synthesize chiral phosphine ligands in homogeneous catalysis.	6	CO4	ВТ3
4(C)	Draw any three modified ligands used to synthesize chiral phosphine ligands in homogeneous catalysis.	6	CO4	BT3

"T3 Examination, December-2022"

CENTECTED	III	DATE OF EXAM	LS.12.2022
SEMESTER SUBJECT NAME	ORGANIC CHEMISTRY-II	SUBJECT CODE	CHH203B-T
BRANCH	Chemistry	SESSION	I
TIME	9:00 am-12:00noon	MAX. MARKS	100
PROGRAM	B.Sc. Chemistry (Hons.)	CREDITS	4
NAME OF FACULTY	DR. EKTA RAWAT	NAME OF COURSE COORDINATOR	DR. EKTA RAWAT

Note: All questions are compulsory.

Note:	All quest	ions are compulsory.	COLUMN TO SERVICE	A STATE OF STATE	239.1
Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
	1(A)	Discuss the mechanism of S_{N^1} reaction in alkylhalides with energy profile diagram.	6	CO1	BT2, BT3
PA	1(B)	Write any two methods of synthesis aryl halides.	4	CO1	BT2, BT3
PART-A	Q2(A)	Explain with examples Hydroboration-oxidation of alkenes. Write any two methods of synthesis aryl halides.	4	CO2	BT3
	2(B)	What is Claisen rearrangement? Give mechanism for <i>para</i> -rearrangement.	6	C02	BT2, BT3, BT4
PAI	Q.3(A)	Give briefly at least two methods of preparation of ketones.	3+3=6	C03	BT2, BT3
PART-B	3(B)	Discuss following reaction with mechanism giving suitable examples: (i) Baeyer-Villiger oxidation (ii) Claisan-Schmidt Reaction	7+7=14	CO3	BT3, BT4
	Q4(A)	Write a short note on Rosenmund's reaction.	4	CO3	BT3, BT4
	4(B)	Why Cannizaro reaction is considered as self- oxidation or disproportionation reaction. Explain with mechanism.	8	C03	BT3, BT4

	4(C)	Aldehydes can be reduced to alcohols can be reduced to primary alcohols by reducing agents like LiAlH ₄ . Give detailed mechanism.	8	CO3	BT3
	Q5(A)	How can you justify the observed order of reactivity of acid derivatives towards nucleophilic substitution reactions?	7	CO4	
		What are acid amides? How can they be prepared from other acid derivatives?	7	CO4	BT3
שׁ	5(B) 5(C)	Outline the mechanism of Dieckmann reaction.	6	CO4	BT3, BT4
PART-C		How can you convert acid chloride into: (i)Carboxylic acids	3+3=6	CO4	BT3, BT4
-C	6(A)	(ii) Amides Write short note on following properties of esters: (i) Ammonolysis	4+4=8	C04	BT3
	6(B)	(ii) Alcoholysis What is nucelophilic substitution? Give its	6	CO4	BT2, BT3
	6(C)	mechanism.	0		

"T3 Examination, Dec-2022"

SEMESTER	3rd	DATE OF EXAM	12-12-2022
SUBJECT NAME	Physical chemistry-II	SUBJECT CODE	СНН201ВТ
BRANCH	Chemistry	SESSION	MORNING
TIME	9:00-12:00am	MAX. MARKS	100
PROGRAM	B.Sc.(H)	CREDITS	4
NAME OF FACULTY	Dr. Priti Gupta	NAME OF COURSE COORDINATOR	Dr. Priti Gupta

Note: ALL QUESTIONS ARE COMPULSORY. (Scientific calculator is allowed).

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM 'S LEVEL
	1(A)	Under what conditions the heat evolved or absorbed is equal to the internal energy change?	2	CO1	BT2
	1(B)	"The entropy of the system is constantly increasing "Justify.	2	CO1	BT2
u,	1(C)	Derive "Gibb's Helmholtz "equation in terms of free energy and enthalpy change at constant pressure.	3	CO1	BT2
PΑ	1(D)	How Cp and Cv are related with each other? Derive the relationship.	3	CO1	BT3
PART-A	1(E)	Calculate the entropy change when 2 moles of an ideal gas are allowed to expand isothermally at 293 K from a pressure of 10 atmosphere to a pressure of 2 atmosphere.	3 .	CO2	BT4
	1(F)	Diffrentiate between Reversible and Irreversible process.	3	CO2	BT2
	1(G)	Write a short note on "Le Chatelier's Priciple".	4	CO2	BT2

		Describe the process of Reverse Osmosis with comparison to Osmosis. How Reverse process is used in			1
41119	Q2(A)	Desalination of sea water.	7	CO3	BT4
PA	2(B)	A 5% aqueous solution by mass of a non-volatile solute boils at 100.15° C. Calculate the molar mass of the solute. K $_{b}$ = 0.52 K kg mol ⁻¹ .	7	CO2	BT3
PART	2(C)	State Henry's law. Show that the volume of a gas dissolved in a given volume of solvent at constant temperature is independent of pressure.	7	CO3	BT2
	2(D)	Define the following terms: a) Ebullioscopic constant b) Raoult's Law	7	CO3	
	2(E)	Calculate the vapor pressure of a solution made by dissolving 21.80 g of glucose (molar mass = 180.155 g/mol) in 460.0 g of H ₂ O at 30.0 °C. (The vapor pressure of the pure solvent is 31.82 mmHg at 30.0 °C.)	6	CO3	BT2
	2(F)	What do you understand by Cryoscopic constant? How molecular weight can be determined from depression of freezing point?	6	CO3	BT3
	Q3(A)	With the help of two examples, show that the rate can be independent of initial concentration of the reactants. What is the order of such reactions?	8	CO3	BT2
	3(B)	50% of the first order reaction is completed in 23 minutes. Calculate the time required to complete 90% of the reaction.	5	CO4	BT3
PAF	3(c)	Explain the term Effective collision .On what factors does it depends?	6	CO4	BT2
PART-C	3(D)	Explain Integrated rate equation and Graphical methods for determining the Order of reaction	6	CO4	BT3
	3(E)	Show that for a first order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.	7	CO4	BT4
	3 (p)	Write short note on: 1)Activation Energy 2)Transition State theory 3)Pseudo order reactions	8	CO4	BT2

END

END TERM Examination, DEC-2022

SEMESTER	V th	DATE OF PARTY	
SUBJECT NAME	ENVIDONMENT	DATE OF EXAM	17.12.2022
	ENVIRONMENTAL ETHICS & SUSTAINABLE DEVELOPMENT/	SUBJECT CODE	CHS234
BRANCH	CSE/AIML/CSTI	SESSION	
TIME	01:00 PM-2:30 AM	MAX. MARKS	
PROGRAM	В.ТЕСН		50
NAME OF	Dr V.V. Pathak	CREDITS	2
FACULTY Il questions are compuled		NAME OF COURSE COORDINATOR	Dr. V.V.PATHAK

All questions are compulsory, marks are indicated against each questions.

		ite compulsory, marks are indicated against each question	rs.			
	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Explain 'population explosion' and its impact on natural resources.	2	CO1	10	
	1(B)	What do you understand by optimal use of resource consumption?			L2	
	1(C)	Explain current environmental issues related		C01	L2	
7	1(D)	Explain the concept (age of the later)	2	CO1	L2	
A		Explain the concept 'egg of sustainability'. Which of the following SDG is related to	2	CO2	L2	
PART-A	1(E)	'QUALITY EDUCATION'? (i) SDG 4 (ii) SDG 3 (iii) SDG 7 (iv) SDG 8				
	1(F)	Which of the following is an example of bioenergy? (i)Biogas (ii)Biodiesel (iii)Bio-alcohol (iv)All of the above	1	CO2	L1	
PA	Q2.	What do you understand by 'Triple Bottle Line' in sustainable development?	5	CO2	L1	
PART-B	Q.3.	What is climate change? Explain the mitigation	5	CO3	L1 L2, L3	
	Q.4.	Explain the challenges in sustainable development in Indian scenario.	10	CO3	L3	
1-0	Q.5	What do you understand by sustainable tourism? How it is different from conventional tourism?			L3	

Q.6	Explain the role of information technology in sustainable development.	F	20.4		
a	Write short notes on:	3	CO4	L3	
	(i) Waste to wealth				
	(ii) Agenda 21				
	(iii) Anaerobic digestion		1		
	(iv) Biotic resources				
Q.7.		10	CO4	L3	

End Tum Examination, December-2022"

SEMESTER	V	DATE OF EXAM	2/12/2029
SUBJECT NAME	Biochemistry & Natural Products	SUBJECT CODE	CHH-302 BT
BRANCH	Chemistry	SESSION	7
FIME	9 AM - 12 NOON	MAX. MARKS	100
PROGRAM	B.Sc. (H) Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Megha Bansal	NAME OF COURSE COORDINATOR	Dr. Megha Bansal

Note: All questions are compulsory.

Bloom's Level: L1-Remembering; L2-Understanding; L3-Applying; L4-Analyzing; L5-Evaluating:

L6-Creating

(Q.NO.	QUESTIONS		CO ADDR ESSED	BLOC M'S LEVE	PI
	1(A)	The nucleotides in DNA and RNA have three components: a sugar group, a nitrogenous base, and a phosphate group. How one nucleotide is joined to the adjacent nucleotides. Discuss the type of bond present and its specific features.	5	CO!	1.3	11.5
PA	1(B)	Compare and contrast structural and functional properties of (a) Purines and pyrimidines (b) Nucleoside and nucleotide	5	COI	L 3	1.1.1
PART-A	1(C)	What happens when (a) Alanine reacts with benzyl alcohol (b) BOC chloride reacts with glycine	5	CO2	1.2	1.2.2
	1(D)	Discuss the significance of isoelectric point (PI) for amino acids. Calculate PI if $pK1 = 2.34$ and $pK2 = 9.60$	5	CO2	L3	4.1.2
PART-B	Q2(A)	Explain following observations with suitable chemical reactions: (a) D-fructose gives a positive Tollens's Test (b) NaBH ₄ reduction of D-fructose gives two alditols, but the same reduction of D-glucose gives only one.	5	CO3	1.3	5.2.1

		Discuss the commercial synthesis of Indigotin dye ********** END ************************************	5	CO4	1.3	112
	5 (D)	How are phenolphthalein and fluorescein prepared. What happens when excess alkali is added to phenolphthalein.	5	CO4	1.4	11.2
-	5 (C)	surdefule and application.	5	CO4	14	11.2.
	5 (B)	in the dyeing industry and as an indicator. How is Congo red prepared. Classify this dye on the basis of	5	CO4	1.3	
	5(A)	Discuss the synthesis of Methyl orange Flahorate on its				11.2
	4 (D)	Discuss the importance of nitro and nitroso dyes by taking suitable example.	5	CO4	1.3	5.2
ART-C	4 (C)	Dyes can be classified on the basis of method of application. Discuss the method which is best suitable for the dying of non-polar/synthetic fiber.	5	CO4	L3	5.2.
PAI		$ \bigcirc \qquad \bigcirc \qquad$	5	CO4	L3	5.2
	4(B)	for wavelength shift in molecules, thereby for their colors. Arrange following molecules in the increasing order of \(\lambda\) max and explain the reason for the same.				
	Q 4(A)	"The presence of chromophore alone is not only responsible for the color of the molecule." Justify this statement with the help of a suitable example. How conjugation is responsible	5	CO4	1.2	7.2
		What is glycosidic linkage. Discuss the structure of maltose and sucrose. Comment upon the reducing properties of both disaccharides.	01	CO3	L3	7.2
-7311	3 (C)	(a) Write an equation for the reaction of glucose with phenylhydrazine(b) Ene-diol rearrangement	5	CO3	1.4	
	3(B)	(ii) Glucose can be obtained in pyranose and furanose both forms but fructose only one. Using Fischer projection formulas	5	CO3	- 1.4	± 1
	Q 3(A)	Give reasons:	197			
	2 (C	(a) Enantiomers (b) Diastereomers (c) Constitutional isomers (d) Mutarotation (e) Epimers	10	CO3	Li	
	2(B)	points: (a) cyclic hemiacetal ring (b) Fischer structure (c) Haworth structure	5	CO3	11	

"T3 Examination, DEC-2022"

SEMESTER	VTH	DATE OF EXAM	14-13-2022
SUBJECT NAME	ANALYTICAL CHEMISTRY & SPECTROSCOPY	SUBJECT CODE	СНН303В Т
BRANCH	Chemistry	SESSION	I I
TIME	9:00-12:00am	MAX. MARKS	100
PROGRAM	B.Sc.(H)	CREDITS	4
NAME OF FACULTY	Dr. Priti Gupta	NAME OF COURSE COORDINATOR	Dr. Priti Gupta

Note: All questions are compulsory.

	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S
	1(A)	Describe the range of the electromagnetic radiations useful for Ultraviolet and Infrared spectroscopy.	2	CO1	BT2
	1(B)	Calculate the formula weight of PdCl ₂ to correct number of significant figures.	2	CO1	BT2
	1(C)	Discuss two main roles of Analytical Chemistry in Pharmaceutical industries	2	CO1	BT2
PART-A	1(D)	Discuss the sources of indeterminate errors.	4	CO1	ВТ3
T-A	1(E)	The electromagnetic radiation in the frequency range 10 ¹⁹ -10 ¹⁷ Hz belongs to which region?	2	CO2	BT4
	1(F)	Which out of benzene (colorless) or Quinone (yellow) has more easily promoted electrons?	2	CO2	BT2
	1(G)	What structural features may produce bathochromic or hypochromic effect in an organic compound?	3	CO2	BT2
	1(H)	What do you understand by a good solvent in UV spectroscopy and what is the effect on absorption Maximum?	3	CO2	BT3
PART-B	Q2(A)	Discuss the principle of Thin –Layer Chromatography. In what way it is superior to paper chromatography?	6	CO3	BT2
Т-В	2(B)	Discuss the techniques used for the development of chromatograms.	7	CO3	BT1

	2(c) -	How column efficiency in chromatography is calculated? Why the efficiency of a chromatographic column does increases with an increasing number of theoretical plates?	7	CO3	BT4
	3(A)	Discuss Size exclusion chromatography with its principle, classification and applications.	7	CO3	BT2
	3(B)	With the help of schematic diagram of a HPLC unit describe the below components and their functions: 1) Column 2) Pumping system	8	CO3	BT2
	3(c)	What consideration should be taken into account for selecting a carrier gas in GSC? Depicts the differential thermal analysis investigation of	5	CO3	BT2
		calcium acetate monohydrate at a uniform programmed heating rate of 12°C/minute.	£ .,,	CO4	BT2
PAI	Q4(A) 4(B)	How equivalence point can be determined by various methods in Potentiometric titration and its advantages	7	CO4	BT3
PART-C	4©	Discss varios applicatios of DTA I fields of Aalytical, physical and Organic chemistry.	9	CO4	BT4
	4(D) (S.)	Define the term Thermogravimetry and classify it into various techniques.	6	CO4	BT2
	Q4(E)	Discuss the type of above titration curve with proper explaination.	5	CO4	BT3
	4(F)	With the schematic diagram describe the various components and their function in DSC apparatus	8	CO4	BT3

"End Examination, Dec-2022"

V		
Dhysical Cl	DATE OF EXAM	16.12.2022
	SUBJECT CODE	СНН301В-Т
Chemistry	SESSION	
09:00 am - 12:00 noon		202 9 -2023 (I)
	A Committee of the Comm	
	CREDITS	4
Dr. Harsha Devnani	NAME OF COURSE	Dr. Harsha Devnani
	Physical Chemistry-IV Chemistry 09:00 am - 12:00 noon B.Sc Chemistry Dr. Harsha Devnani	Chemistry SESSION 09:00 am - 12:00 noon MAX. MARKS B.Sc Chemistry CREDITS Dr. Harsha Devnani NAME OF COURSE COORDINATION

Note: All Questions are compulsory

	0.110				Hor
	Q.NO.	QUE TIONS	MARKS	CO ADDRESSEI	BLOOM
	Q1	Derive the Broglie relation and state its importance.	4 .	CO1	BT2
PART-A	Q2	Discuss Kronecker Delta.	4 .	COI	BT1,BT2
	Q3	Comment on the simple harmonic oscillator vibrations for a diatomic molecule and five the expression relating force constant and frequency of vibration.		CO2	BT1,BT2
	Q4	Briefly explain Born-Oppenheimer approximation.	4	CO3	BT1
	Q5	Sketch the molecular orbital energy level diagram for CO molecule.	4	CO4	BT3
PA	Q6	Using the energy level expression and the appropriate selection rules draw an energy level diagram and the spectral transitions for the rotational Raman spectrum of a rigid diatomic rotor. Also show the appearance of the spectrum.	5	CO6	BT3
PART-R	Q7	Predict the high resolution pmr spectrum of 1,1,2-trichloroethane.	5	CO6	BT3
3	Q8	Predict the number of ESR lines in the spectrum of (a) CH ₃ CH ₂ • radical (b) CH ₃ CH ₂ CH ₂ • radical	10	CO6	BT4
PART:	Q9	Draw the Jablonski diagram and explain all the processes in detail.	6	CO6	BT1,BT2
	Q10	Discuss the rotational spectra of polyatomic molecules.	6	CO5	BT2

200	The pure rotational (microways) and the				
	Q11	internuclear distance of the molecule. The mola masses are: ¹² C = 12.011 and ¹⁴ N = 14.007 gmol ⁻¹	y e r 6	CO5	ВТ3
	Q12	 a. Which of the following molecules give pure rotational absorption spectra? N₂, O₂, NO, CH CO, CO₂, N₂O, SO₂, C₂H₄, CH₄, and H₂C=O (formaldehyde) b. Which of the following molecules give vibrational absorption spectra? N₂, O₂, NO, CH CO, CO₂, N₂O, and SO₂. 	6	CO5	BT4
	Q13	 a. While there are pure rotational spectra, there is no such thing as pure vibrational spectra. Why? b. It is usually stressed that the vibrational spectroscopy yields valuable information about the "nature of bonding" in diatomic molecules. What quantity in this spectroscopy is particularly useful for this purpose? 	6	CO5	BT4
	Q14	State and illustrate with suitable potential energy curves the Franck-Condon principle in the vibronic spectrum of a diatomic molecule.	6	CO6	BT2
P	Q15	 a. Comment on the intensities of Stokes and anti- Stokes lines in Raman spectrum. b. Comment on spin-spin coupling in 2-methyl propene and 1-chloro-2,2-dimethyl propane. 	6	CO6	BT2,BT4
ART-	Q16	Discuss the applications of ESR spectroscopy.	6	CO6	BT1,BT2
-D	Q17	Comment on the following: a. It is not usually possible to record IR spectra for aqueous solutions. b. Homonuclear molecules are IR inactive but Raman active	6	CO5	BT4
	Q18	Discuss why the charge transfer spectra have very high intensity.	6	CO6	BT2,BT4

END TERM Examination, DEC-2022

SEMESTER	V th	DATE OF EXAM	
SUBJECT NAME	Chemistry in Agriculture	DATE OF EXAM	20.12.2022
BRANCH		SUBJECT CODE	CHS304B
	BSC CHEMISTRY (Hons.)	SESSION	I
TIME	09:00 AM-10:30 AM	MAX. MARKS	50
PROGRAM	BSC CHEMISTRY (Hons.)	CREDITS	30
NAME OF	Dr V.V. Pathak		
FACULTY		NAME OF COURSE COORDINATOR	Dr. V.V.PATHAK

Note: All questions are compulsory.

		The state of the s				
Q.N	0.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Silt is a: (i) Fine grained soil with little or no plasticity. (ii) Clay with high mineral content. (iii) Volcanic lava (iv) Deposited material				
1	1(B)	Soil transported by running water: (i) Eolian soil (ii) Clay soil (iii) Alluvial soil (iv) None of the above	1	CO1	L1	
PART-A	(C)	In unified soil classification system OL stands for: (i)Organic soil with low porosity (ii) organic soil with low plasticity (iii) Poorly graded organic soil (iv) Porous Silt		CO1	L1	
A 1	(D)	Explain the methods of soil sampling.	2	CO1	L1	
1	(E)	What is soil erosion? Explain methods to control soil erosion.	2	CO1		
1	(F)	What do you understand by straight fertilizers?			L1	
1((G)	Volume of soil which is either filled by water or air is termed as: (i)Bulk density (ii)Permeability (iii)Porosity (iv) None of the above	1	CO2	L1	
PART-B	2.	Explain the followings: (i) Soil erosion (ii) Fungicides	1	CO2	L1	

	Q.3.	What is bio-fertilizer? Explain the method of preparation and advantages of bio-fertilizer.	10	C03, C04	L2, L3
	Q.4.	Explain Bio-magnification, bio-accumulation and bio-transformation process with respect of heavy metal toxicity.	5	CO3	L3
P/	Q.5	Explain the major and minor nutrients required for the plant growth.	5	C03	L3
PART-C	Q.6	Define the term 'plant growth promoters'. Explain the method for preparation of Indole Acetic Acid and Gibberlin.	10	CO4	L3
C	Q.7.	Explain sustainable agriculture practice with example.	5	CO4	L3

406

"End-term Examination, December-2022"

Ena-leim Examination		
V	DATE OF EXAM	19.12.2022
Transition Elements Coordination compounds and Chemical Kinetics	SUBJECT CODE	CHH312T
Education	SESSION	I
9:00 AM to 12:00 Noon	MAX. MARKS	80
BSc BEd	CREDITS	3
Dr. A. Jayamani	NAME OF COURSE COORDINATOR	Dr. A. Jayamani
	Transition Elements Coordination compounds and Chemical Kinetics Education 9:00 AM to 12:00 Noon BSc BEd	Transition Elements Coordination compounds and Chemical Kinetics Education 9:00 AM to 12:00 Noon BSc BEd Dr. A. Jayamani SUBJECT CODE SUBJECT CODE SUBJECT CODE SESSION SESSION MAX. MARKS CREDITS NAME OF COURSE

	A.7	te: All questions are compulsory. Kindly allow scientific calcula	tor.	,,,,,,,,		
	Q.NO.	QUESTIONS	MA RKS	CO ADDRES SED	BLOOM'S LEVEL	PI
PART-A	Q1(A)	In transition metal some metals are termed as soft metals?	2	CO1	BT2	
	1(B)	How metal oxides of transition metals are classified?	2	CO1	BT2	
	1(C)	Give examples for lanthanide contraction?	2	CO1	BT3	
	1(D)	Which metal with very high melting point is extracted majorly by powder metallurgy?	2	CO1	BT1	
	1(E)	What are the different separation techniques involved for separating inner transition elements.	2	CO1	BT2	
	Q2(A)	What is the primary and secondary valency in [Co(en) ₃]?	2	CO2	BT3	
	2(B)	Identify the ligands, coordination number and oxidation states of $K_2[FeCl_2(en)_2]$	2	CO2	BT3	
PART-B	2(C)	How chelated complexes gets extra stability?	2	CO2	BT2	
P _t	2(D)	Optical isomerism will not be shown by complexes in which geometry?	2	CO2	BT2	
	2(E)	Explore the magnetic property of $[Cr(NH_3)_6]^{3+}$?	2	CO2	BT1	

	3(A)	What is rate and order of a reaction? How they can be obtained for a reaction explain with examples?	6	CO3	BT2
PART- C	3(B)	Explain how a radioactive decay is considered as a first order reaction?	4	CO3	BT3
	4(A)	What are the different methods used for determining the order of a reaction? Explain any two methods in detail.	6	CO3	BT2
	4(C)	The rate constants of a reaction which occurred at 500K and 700 K are 0.02 S^{-1} and 0.07 S^{-1} , respectively. Calculate the value of activation energy of the reaction (log3.5 = 0.544).	4	CO3	BT4
	5(A)	Write short notes on the transition state theory and collision theory	6	CO3	BT3
	5(B)	What is activation energy? How does it interfere in rate of a reaction	4	CO3	BT2
	6(A)	What is adsorption? Explain different types of adsorption process.	4	CO4	BT1
	6(B)	How does the catalysts are classified? Explain each in brief	6	CO4	BT2
T-D	7(A)	Explain Langmuir adsorption isotherm highlighting how the equilibrium exists between adsorbate and adsorbent system.	6	CO4	BT2
PART- D	7(B)	Explain the relation between Gibbs adsorption isotherm and surface excess.	4	CO4	BT1
	8(A)	Describe in detail about BET adsorption isotherm for multilayer adsorption process and Illustrate different types of BET adsorption isotherms.	10	CO4	BT3
		********* END *******	*****	*	

80 M