

MANAYRACHNA

DEPARTMENT OF CHEMISTRY

"T3 Examination, Dec-2021"

SEMESTER	III RD	DATE OF EXAM	02-12-2021
SUBJECT NAME	Organic Chemistry-I	SUBJECT CODE	СНН237-Т
BRANCH	B.Sc. B.Ed.	SESSION	I
TIME	9:00 AM-12:00 NOON	MAX. MARKS	80
PROGRAM	B.Sc. B.Ed.	CREDITS	3
NAME OF FACULTY	Dr. V.V. Pathak	NAME OF COURSE COORDINATOR	Dr. V.V. Pathak

Note: All questions are compulsory.

Part a and Part B: MCQ/ Short answer type questions, each question carries 1 mark.

Part C and Part D: Long answer type questions, each question carries 10 marks.

Q	NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	meso -Tartric acid is: (i) Sometime optically active (ii) Sometimes optically inactive (iii) Always optically active (iv) Always optically inactive				
7.47	1(B)	Which of the following statement is false about enantiomer: (i) Rotate plane polarized light (ii) Are superimposable mirror images (iii) Are non-superimposable mirror images (iv) Is characterized by all of the above	1	CO1	BT1	
	1(C)	2-Butanol is optically active due to: (i) An asymmetric carbon (ii) A plane of symmetry (iii) A hydroxyl group (iv) A centre of symmetry	1	CO1	BT1	
	1(D)	Compound with same molecular formula but different structural formula are called: (i) Isomer (ii) Ortho compounds (iii) Iso compounds (iv) None of these	1	CO1	BT1	
	21-1-5		1	CO1	BT1	

A molecule is said to be chiral if: (i) It contains plane of symmetry (ii) It can not be superimposed on mirror image. (iv) None of these 1 CO1 BT1 1(F) Define tautomerism with example. 1 CO1 BT2 1(G) What do you understand by optically active compounds? 1 CO1 Explain Cis and Trans isomers. 1 CO1 BT2 1(I) Define the term Enantiomers. 1 CO1 BT2 1(I) Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
1(E) (ii) It contains centre of symmetry (iii) It can not be superimposed on mirror image. (iv) None of these 1 CO1 BT1 1(F) Define tautomerism with example. 1 BT2 1(G) What do you understand by optically active compounds? 1 CO1 BT2 1(H) Explain Cis and Trans isomers. 1 CO1 BT2 1(I) Define the term Enantiomers. 1 CO1 BT2 1(I) Define the term specific rotation. 1 Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
1(E) (iii) It can not be superimposed on mirror image. (iv) None of these 1 CO1 BT1 1(F) Define tautomerism with example. 1 CO1 BT2 1(G) What do you understand by optically active compounds? 1 CO1 BT2 1(H) Explain Cis and Trans isomers. 1 CO1 BT2 1(I) Define the term Enantiomers. 1 CO1 BT2 1(I) Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
mirror image. (iv) None of these 1 CO1 BT1 1(F) Define tautomerism with example. 1 CO1 BT2 1(G) What do you understand by optically active compounds? 1 CO1 BT2 1(H) Explain Cis and Trans isomers. 1 CO1 BT2 1(I) Define the term Enantiomers. 1 CO1 BT2 1(I) Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
(iv) None of these 1 CO1 BT1 CO1 1(F) Define tautomerism with example. 1 CO1 BT2 1(G) What do you understand by optically active compounds? 1 BT2 1(H) Explain Cis and Trans isomers. 1 CO1 BT2 1(I) Define the term Enantiomers. 1 CO1 BT2 CO1 BT2 1(I) Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
1 CO1 BT1 CO1 Define tautomerism with example. 1 CO1 BT2 CO1 1(G) What do you understand by optically active compounds? 1 CO1 BT2 C	
1(F) Define tautomerism with example. 1 (G) What do you understand by optically active compounds? 1 (H) Explain Cis and Trans isomers. 1 (CO1 BT2 CO1 BT2 (i) Define the term Enantiomers. 1 (CO1 BT2 CO1 BT2	
1 BT2 1(G) What do you understand by optically active compounds? 1 CO1 BT2 1(H) Explain Cis and Trans isomers. 1 CO1 BT2 1(I) Define the term Enantiomers. 1 CO1 BT2 1(I) Define the term specific rotation. 1 Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
1 (G) What do you understand by optically active compounds? 1 (D) Explain Cis and Trans isomers. 1 (D) Define the term Enantiomers. 1 (D) Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
T(B) What do you understand by optically active compounds? 1	
Tempounds? 1 CO1 BT2 1(1) Explain Cis and Trans isomers. 1 CO1 BT2 1(1) Define the term Enantiomers. 1 CO1 BT2 CO1 BT2 CO1 BT2 CO1 BT2 CO1 BT2 I CO1 BT2	,
Explain Cis and Trans isomers. 1 1(1) Define the term Enantiomers. 1 CO1 BT2	
Explain Cis and Trans isomers. 1 1(1) Define the term Enantiomers. 1 CO1 BT2 CO1 Accordance (i) Isopropane (ii) Propene (iii) Accetylene	
Define the term Enantiomers. 1 1(1) Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
Define the term Enantiomers. 1 CO1 BT2 Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
Define the term specific rotation. Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
Which of the following is a saturated hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
hydrocarbon? (i) Isopropane (ii) Propene (iii) Acetylene	
(ii) Propene (iii) Acetylene	
(iii) Acetylene	
[Bed Managed all	
Q2(A) (iv) None of these	
Which of the following is the most reactive BT1	
cycloalkane?	
(i) Cyclobutane	
(ii) Cyclopropane	
(iii) Cyclopentane	
(iv) Cyclohexane 1 CO2 BT1	
Paragraph (IV) Cyclonexane 1 CO2 BT1 Which of the following Alkane is a chief constituent of Biogas? (i) Ethane	_
constituent of Biogas?	
(i) Ethane	
(ii) Octane .	
(iii) N-butane	
(iv) Methane	
2(C) 1 CO2 BT1	
Halogenation of Alkane in presence of light	
takes place through the: (i) Addition reaction	
(i) Addition reaction (ii) Elimination reaction	
(iii) Reduction reaction	
(iv) Free radical mechanism	
2(D) 1 CO2 BT1	

	2(E)	Alkene undergoes addition reaction due to: (i) Sigma bond (ii) Pi bond (iii) Hydrogen bond (iv) None of these	1	CO2	BT1
	2(F)	What do you understand by saturated and unsaturated hydrocarbons?	1	CO2	BT2
	2(G)	Calculate strain and bond angle in cyclobutane and cyclopropane.	1	CO2	BT2
	2(H)	Explain banana bond in cyclopropane.	1	CO2	BT2
	2(1)	Explain Saytzeff rule with example.	1	CO2	BT2
	2(J)	Write chemical reaction for formation of alkene via dehalogenation.	1	CO2	BT2
P	Q3	What do you understand by aromaticity? Explain the criteria for aromaticity.	10	C03	BT3,
PART-	Q4	Write the methods of preparation of Benzene from Chlorobenzene, Acetylene and phenol. Explain its physical properties.		C03	BT2, BT3
Ċ	Q5	Explain the reaction mechanism for Electrophilic substitution of Benzene with example of Sulphonation and Nitration.	10	CO3	BT3, BTT4
_	Q6	Explain S _N 1 and S _N 2 reactions with mechanism for Alkyl halide.	10	CO4	BT4
ART.	Q7	Why aryl halides do not undergoes Nucleophilic displacement reactions readily?	10	CO4	BT3
G- -D	Q8	How will you synthesis Nitrophenol from p- Nitrochlorobenzene in the presence of aq. NaOH at 160 °C. Explain with reaction mechanism.	10	CO4	BT4

MANAVRACHNA

MANAV RACHNA UNIVERSITY

DEPARTMENT OF CHEMISTRY

"T3 Examination, Dec-2021"

			THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IN COLUMN
SEMESTER SUBJECT NAME	3rd Physical chemistry-II	DATE OF EXAM SUBJECT CODE	2-12-2021 CHH201BT
BRANCH TIME PROGRAM	Chemistry 9:00-12:00am B.Sc.(H)	SESSION MAX. MARKS CREDITS	MORNING 100 4
NAME OF FACULTY	Dr.Priti Gupta	NAME OF COURSE COORDINATOR	Dr.Priti Gupta

Note: ALL QUESTIONS ARE COMPULSORY. (Scientific calculator is allowed).

NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	ŀ
1(A)	What will be the work done in a constant volume process and why? A)negative B) zero C) positive D)none of the above	2	COI	BT2	
1(B)	"The entropy of the system is constantly increasing ".Justify.	2	COI	BT2	
1(C)	Calculate the entropy change when 2 moles of an ideal gas are allowed to expand isothermally at 293 K from a pressure of 10 atmosphere to a pressure of 2 atmosphere.	3	COI	B12	
1(D)	When I gm of liquid naphthalene (C 10118) solidities, 150 I of heat is evolved. What is the enthalpy of fusion of CmH ₈ ?	3	COI	втз	
1(E)	Joule-Thomson effect is related to: (A) adiabatic compression (B) adiabatic expansion (C) isothermal expansion (D) isothermal compression	2	CO2	BT4	
1(F)	Define Joule Thomson coefficient .Show that it is zero for an ideal gas	4	CO2	BT2	
	1(A) 1(B) 1(C) 1(D)	What will be the work done in a constant volume process and why? A)negative B) zero C) positive D)none of the above 1(B) "The entropy of the system is constantly increasing "Justify. Calculate the entropy change when 2 moles of an ideal gas are allowed to expand isothermally at 293 K from a pressure of 10 atmosphere to a pressure of 2 atmosphere. When 1 gm of liquid naphthalene (C10118) solidities, 150 J of heat is evolved. What is the enthalpy of fusion of Cpolls? Joule-Thomson effect is related to: (A) adiabatic compression (B) adiabatic expansion (C) isothermal expansion (D) isothermal compression Define Joule Thomson coefficient Show that it is zero for	What will be the work done in a constant volume process and why? A)negative B) zero C) positive D)none of the above 2 1(B) "The entropy of the system is constantly increasing "Justify. Calculate the entropy change when 2 moles of an ideal gas are allowed to expand isothermally at 293 K from a pressure of 10 atmosphere to a pressure of 2 atmosphere. When 1 gm of liquid naphthalene (C10118) solidities, 150 J of heat is evolved. What is the enthalpy of fusion of Cpalla? Joule-Thomson effect is related to: (A) adiabatic compression (B) adiabatic expansion (C) isothermal expansion (D) isothermal compression Define Joule Thomson coefficient Show that it is zero for an ideal gas	What will be the work done in a constant volume process and why? A)negative B) zero C) positive D)none of the above COI 1(B) "The entropy of the system is constantly increasing "Justify. Calculate the entropy change when 2 moles of an ideal gas are allowed to expand isothermally at 293 K from a pressure of 10 atmosphere to a pressure of 2 atmosphere. When 1 gm of liquid maphthalene (C 10118) solidities, 150 J of heat is evolved. What is the enthalpy of fusion of C 101162 1(E) Joule-Thomson effect is related to: (A) adiabatic compression (B) adiabatic expansion (C) isothermal expansion (D) isothermal compression Define Joule Thomson coefficient .Show that it is zero for an ideal gas 4 CO2	What will be the work done in a constant volume process and why? A)negative B) zero C) positive D)none of the above 1(B) "The entropy of the system is constantly increasing "Justify. Calculate the entropy change when 2 moles of an ideal gas are allowed to expand isothermally at 293 K from a pressure of 10 atmosphere to a pressure of 2 atmosphere. When 1 gm of liquid naphthalene (C10118) solidities, 150 J of heat is evolved. What is the enthalpy of fusion of Cpalls? CO1 B12 CO1 B13 CO1 B13 CO1 B13 CO1 B13 CO1 B13 Define Joule Thomson coefficient Show that it is zero for an ideal gas 4 CO2 B14

. 1	_				
	1(G)	Write a short note on "Le Chatelier's Priciple".	4	CO2	
	1(H)	A solution containing 0.513 gm of naphthalene (molar mass = 128) in 50 gm of Carbon tetrachloride gives a boiling point elevation of 0.402°C, while a solution of 0.625 gm of an unknown solute gives a boiling point elevation of 0.650°C. Find the molar mass of unknown solute?	-	CO2	B12
	1(l)	Define the following terms: a) Molal Elevation Constant	7	CO2	BT3
1		b) Raoult's Law	6	CO2	DITO
	1(J)	Calculate the vapor pressure of a solution made by dissolving 21.80 g of glucose (molar mass = 180.155 g/mol) in 460.0 g of H ₂ O at 30.0 °C. (The vapor pressure of the pure solvent is 31.82 mmHg at 30.0 °C.)	5	CO3	BT2
	Q2(A)	Describe the process of Reverse Osmosis with comparison to Osmosis. How Reverse process is used in Desalination of sea water.	8	CO3	BT4
PART	2(B)	What are isotonic solutions? Show that for isotonic solutions at the same temperature, the molal concentrations are same.	6	CO3	BT2
Г-B	Q3(A)	Derive an expression for the elevation in boiling point of a liquid when a solute is dissolved in and explain how the molecular mass of solute can be evaluated by the Boiling point method.	8	CO3	BT2
	Q4(A)	With the help of two examples, show that the rate can be independent of initial concentration of the reactants. What is the order of such reactions?	8	CO3	B12
PART-C	4(B)	50% of the first order reaction is completed in 23 minutes. Calculate the time required to complete 90% of the reaction.	5	CO4	B13
	Q5(A)	Explain the term Effective collision .On what factors does it depends?	6	CO4	B12
	5(B)	For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction	6	CO4	B13
	Q6(A)	Explain various methods for determining the Order of reaction.	7	CO4	B14
	6(B)	Derive integrated Arrhenius equation of activation energy. How is activation energy determined from the plot.	8	CO4	BT2

END

"T3 Examination, December-2021"

SEMESTER	III	DATE OF EXAM	06/12/2021
SUBJECT NAME	Organic Chemistry-II	SUBJECT CODE	CHH203B-T
BRANCH	Chemistry	SESSION	1
TIME	09:00AM-12:00 Noon	MAX. MARKS	100
PROGRAM	B.Sc. (H) Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Megha Bansal	NAME OF COURSE COORDINATOR	Dr. Megha Bansal

Note: All questions are compulsory.

Bloom's Level: L1-Remembering; L2-Understanding; L3-Applying; L4-Analyzing; L5-Evaluating;

L6-Creating

Q	Q.NO.	QUESTIONS	MAR KS	CO ADDRE SSED	BLO OM'S LEVE	PI
PART-A	1(A)	What happens when two moles of ethyl chloride react with two moles of sodium in the presence of ether what will be formed. Write suitable chemical reaction.	2.5	COI	L3	1.1.2
	1(B)	Which of the following reactant gives the best method of preparation of alkyl halides when reacts with alcohol and why (a) Zn/HCl (b) PCl ₅ (c) SOCl ₂ / Pyridine (d) PCl ₃	2.5	CO1	L3	1.1.1
	1(C)	Which compound is most nucleophilic and why (a) CH ₃ SH (b) CH ₃ OH (c) H ₂ O (d) CH ₃ COOH (e) BF ₃	2.5	CO1	L2	1.2.1
	1(D)	Arrange the substrates in order of increasing SN ₂ reactivity with NaCN: (a) Bromoethane (b) 1-chloro-3,3-dimethylpentane (c)1-chloro-2,2-dimethylpentane (d) 2-bromo-2-methylpentane	2.5	CO1	L3	1.2.2
	1(E)	Explain why 2,6-di-tert-buylphenol is a much weaker acid than phenol.	2.5	CO2	L2	1.2.1
	1(F)	Which is more acidic, phenol or o-chlorophenol and why.	2.5	CO2	L3	1.1.1
Side Side		Explain why the C-O bond in phenol is shorter than in alcohol.	2.5	CO2	L3	1.2.2
	1(H)	Why HI is a better reagent than HBr in the cleavage of ethers.	2.5	CO2	L3	4.1.2

Scanned with CamScanner

						0
	Q2(A)	Discuss the mechanism for the reaction of aldehyde with halogens in the presence of alkali.	5	CO3	L3	5.2.1
PART-B	2(B)	Complete the following reactions: COCL COCL LTBA, (b) AIU3, NO2 C) 3 CH2 = NH Trimerication (d) CH3-CH + GH5-NH2 (e) CH3 > C=0 + NH CH3 TCOH, CH3	5	CO3	L4	4.1.2
-B	2 (C)	Aldehydes having α-H atom usually do not undergo the Cannizzaro reaction under its reaction condition. Given an explanation by writing suitable Cannizzaro reaction.	10	CO3	L4	4.1.2
	Q 3(A)	Explain why benzaldehyde gives a positive test with Tollen's reagent but not with Fehling's solution. Why aldehydes are stronger reducing agent than ketones.		CO3	L4	4.1.2
	3(B)	Explain following name reactions: (a) Baeyer Villiger oxidation (b) Witting reaction	5	CO3	L4	7.2.1
	3 (C)	Giving reasons, arrange the compounds in order of increasing reactivity towards nucleophilic reagents: (b) An-2-An, An-2-R, R-2-R, An-ch-2-R	10	CO3	L4	7.2.1
	Q 4(A)	Discuss the mechanism for the hydrolysis of acetamide under acidic and basic condition.	5	CO4	L2	7.2.1
	4(B)	Discuss the mechanism for the conversion of acid chloride to respective alcohol	5	CO4	L3	5.2.1
PART-C	4(C)	How will you convert: (a) Tartaric acid to oxalic acid (b) Tartaric acid to succinic acid (c) Tartaric acid to Rochelle salt (d) Bromo succinic acid to Malic acid (e) Benzene to Maleic acid	10	CO4	L3	11.2.
2	Q 5 (A)	Compare the reactivities of CH ₃ COOH, C ₆ H ₅ COOH, CCl ₃ COOH	5	CO4	L5	11.2.
2	5 (B)	Explain why 2-chlorobutanpoic acid is more acidic than 3- chlorobutanoic which is more acidic than butanoic acid.	5	CO4	L3	7.2.1
2	5 (C)	Starting with acetic acid and any reagent of your choice write the synthesis of following: (a)Acetophenone (b) Ethyl acetate (c) Acetyl Chloride (d) Propanoic acid (e) Acetamide	10	CO4	L4	7.2.1
2	In Control of	AREHORAGORAGORAGO END CONTRACTORAGORAGO	***	200	121/1	

"T3 Examination, Dec-2021"

SET-1

SEMESTER	111	DATE OF EXAM	10.12.2021
SUBJECT NAME	Inorganic Chemistry - II	SUBJECT CODE	СНН202В-Т
BRANCH	B.Sc Chemistry	SESSION	2021-2022 (I
TIME	180 mins	MAX. MARKS	100
PROGRAM	B.Sc Chemistry III sem	CREDITS	5
NAME OF FACULTY	Dr. Roopa Rani	NAME OF COURSE COORDINATOR	Dr. Roopa Rani

Note: Attempt all questions

Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	Part /	۸			
Q1	What is the principle of zone refining? explain diagrammatically.	2	COI	3	
Q2	How electrode potential values are useful in deciding the reducing and oxidizing properties of a metal?	3	COI	3,2	
Q3	Out of CO and CO2 which is a better reducing agent and why?	3	COI	2	
Q4	Discuss the utility of Ellingham diagram in explaining the reducing properties of metals.	2	COI	4	
Q5	Discuss the chelation process using EDTA as an example.	3	CO2	4	
Q6	Comment of the following statement – "S-block elements has complex forming tendency".	2	CO2	5	
Q7	Explain the features of alkali metals with respect to a) Sulphates b) Nitrates c) Carbonates	5	CO2	3	
-1	PART	r B			
Q8	Which element among the 17th group members doesn't exhibit positive		CO3	5	

(oxidation state? Why?				-	
	Why first element of each group show anomalous behavior with rest of the elements? Give proper example.	nalous behavior with rest of the				
Q10	Write short notes on the following – a) Borazines b) Silicones	5	CO3	3		
Q11	Discuss the trend of ionization energy among group 13-17 elements of p-block.	5	CO3	3		
Q12	With reference to 13th group elements, discuss the following properties- a) Metallic character b) Electron gain enthalpy c) Melting point d) Atomic size e) Electronic configuration	10	CO3	5		
Q13	Give the general characteristics of hydrides of group 13, 14 and 15.	5	CO4, CO5	2		
Q14	Write short notes on the following – a) Oxoacids of Cl b) Halides of P c) Halides of Si d) Oxides of P e) Clathrate compounds of noble gases	3 3 3 2	CO5	3		
Q1	How	8	CO5	2		
Q1	of interhaloger		CO5	4		
Q	8 Explain in brief the structure and properties of Xenon fluorides.	d 10	CO4, CO5	4		

"T3 Examination, December-2021"

		And the second s	The second secon
SEMESTER	111	DATE OF EXAM	2.12.2921
SUBJECT NAME	Organic Special-I: Statistical Stereochemistry & Asymmetric Synthesis	SUBJECT CODE	СНН 613В
BRANCH	CHEMISTRY	SESSION	1
TIME	9:00 a.m. to 12 noon	MAX. MARKS	100
PROGRAM	M.Sc. Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Ekta Rawat	NAME OF COURSE COORDINATOR	Dr. Ekta Rawat

Note: All questions are compulsory.

Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	Fi
PART-A	Find out the correct Fisher projection formula for the following compound(show with interchanges invovled): 2 1		CO1	втз	

	1		
Faces:			
advised to draw a mechanism first and then consider			
C ₂ H ₅ C ₃ H ₇ C ₄ H ₇ C ₅ H ₇ C ₅ H ₇ C ₅ H ₇ C ₅ H ₇ C ₆ H ₇ C ₇ H			
Write short note on optical purity and %	10	CO4	BT4
	5	CO5	
н—— он Сі—— Вг Н—— он	(2.5+2.5=	COS COS	
Explain in details Ender's asymmetric a- alkylation of hydrazones of aldehydes and ketones. What chiral auxiliaries are used in this reaction to carry out the asymmetric synthesis?			
William's method of asymmetric synthesis can be used for mono- and di-substitution in asymmetric a-alkylation of glycine.	(0.74-12)	C06	
	What controls the stereochemistry of this product? You are advised to draw a mechanism first and then consider the stereochemistry: C ₂ H ₅ OC ₃ H ₇ CH ₃ (i) NaBH ₄ (ii) H ₃ O* Write short note on optical purity and % Enantiomeric excess. Assign prochirality (H _a)to the following: COOH Ha Ha Ha Ha H CI Br H OH COOH Explain in details Ender's asymmetric a-alkylation of hydrazones of aldehydes and ketones. What chiral auxiliaries are used in this reaction to carry out the asymmetric synthesis? William's method of asymmetric synthesis	What controls the stereochemistry of this product? You are advised to draw a mechanism first and then consider the stereochemistry: C2H3 C3H7 (i) NaBH4 (ii) H3O* Write short note on optical purity and % Linantiomeric excess. Assign prochirality (Ha) to the following: COOH Ha CI Br Ha Ha HA CI COOH HA CI Ha Ha HA CI Ha Ha HA CI COOH COO	What controls the stereochemistry of this product? You are advised to draw a mechanism first and then consider the stereochemistry: C2H3 OC3H2 Write short note on optical purity and % Enantiomeric excess. Assign prochirality (H2) to the following: COOH H CI Br H COOH COOH COOH COOH COOH COOH Explain in details Ender's asymmetric allehydes and ketones. What chiral auxiliaries are used in this reaction to carry out the asymmetric synthesis? (8+4=12) William's method of asymmetric synthesis

	Explain.		
Q6(A)	How is Jacobsen's precatalyst and catalyst synthesized using (R,R)-cyclohexane-1,2-diamine? Explain its enantioselectivity for cis-alkenes transition state diagrams	(8+6=14)	CO6
6(B)	What is Midland'reagent? Give its synthesis and applications.	6	C06
	************* END	*****	****

"T3 Examination, Dec-2021"

SET - I

SEMESTER	111	DATE OF EXAM	06.12.2021
SUBJECT	Symmetry and Group Theory	SUBJECT CODE	CHH601B
BRANCH	M.Sc Chemistry	SESSION	2021-2022(I)
пмь	180 mins	MAX. MARKS	100
PROGRAM	M.Sc Chemistry III sem	CREDITS	4
NAME OF FACULTY	Dr. Roopa Rani	NAME OF COURSE COORDINATOR	Dr. Roopa Rani

Note: Attempt all questions

Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	Part A				
Qι	Define equivalent symmetry elements and equivalent symmetry operations using suitable examples.	4	COI	3	
Q2	Determine the point group of the following molecules- a) CO. ² b) SiF ₄ c) HCN	6	COI	3,2	
Q3	Reduce the following representations into irreducible representations referring to the character table of C ₂ , point group E C2 $\sigma(xz)$ $\sigma(yz)$ a) 5 5 1 1 b) 10 -4 -10 4	4	COI	2	
Q4	write notes on the following a) Direct product b) Vanishing integral c) Position and base vector	6	CO2	4	
	PART	В			_
Q5	Explain the orgel diagram for D term splitting with the configuration of d', d', d', d' tetrahedral and octahedral geometry.		CO3	5	
Q6	What do you mean by selection rules? State the spin and laporte selection rule. Why they are necessary?	5	CO3	3	

	Explain the concept of splitting of terms i.e. one-electron level in an octahedral and tetrahedral environment.	10	CO3	6	
Q8	What do you mean by co-relation diagrams? Draw the co-relation diagram for d ² configuration. Explain its utility.	5	CO3	3	
Q9	Derive the secular determinants of 2-atom system and determine the energy of orbitals involved. Write all the steps involved.	10	CO3	5	
Q10	Differentiate among VBT and MOT. Which concept is more useful and why?	5	CO4, CO5	4	
Q11	Using quantum mechanical approach, Verify that the orbitals undergoing sp ² hybridization has an angle of 120.	6	CO5	3	
Q12	Demonstrate different ways of pi bond formation in a molecule. How the hybridization of these molecules can be determined using group theory? Take example of BF3 molecule.		CO5	2	
Q13	Identify the vibrational modes of freedom in H ₂ O molecule and classify among themselves for IR and Raman signals.		CO4	4	
Q14	Identify the number of vibrational modes of transition which are IR active and Raman active taking any example of T ₄ point group.	l	CO4, CO5	3	
Q15	What is the rule of mutual exclusion? Explain the concept taking a suitable example.		CO4	3	
Q16	Using the group theoretical concept, identify the hybridization of NH, molecule. Write all the steps involved	5	CO4	4	

Character tables

Character table for Ch point group

	¥	2C3 (1)	30,	linear, rotations	quadratic
A ₁	1	1	1	:	x2+y2, z2
A2	1	1	-1	R,	
L	2	1	0	(x, y) (R ₁ , R ₂)	(x2-y2, xy) (xz, yz)

Character table for C2r point group

	E	C ₂ (z)	o,(xz)	a*(i.s)	linear, rotations	quadratic
A ₁	1	1	1	1	2	x^2, y^2, t^2
A ₂	1	1	-1	-1	R,	xy.
Bı	1	-1	1	-1	a, R	XI
B2	1	-1	-1	1	y, R,	yz

Character table for T_d point group

	E	8C ₃	3C ₂	6S ₄	6σ _d	linear, rotations	quadratic
A_1	1	1	1	1	1		
A ₂	1	1	1	-1	-1		•
E	2	-1	2	0	0		(z^2, x^2-y^2)
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

D _{3h}	E	2C ₃ (z)	3C'2	σ _h (xy)	2S ₃	3σ _v	linear functions, rotations	quadratic functions	cubic functions
A'1	+1	+1	+1	+1	+1	+1	-	x^2+y^2 , z^2	$x(x^2-3y^2)$
A'2	+1	+1	-1	+1	+1	-1	R _z		$y(3x^2-y^2)$
E'	+2	-1	0	+2	-1	0	(x, y)	(x ² -y ² , xy)	$(xz^2, yz^2) [x(x^2+y^2), y(x^2+y^2)]$
A"1	+1	+1	+1	-1	-1	-1			
A"2	+1	+1	-1	-1	-1	+1	z	-	z^3 . $z(x^2+y^2)$
E"	+2	-1	0	-2	+1	0	(R _x , R _y)	(xz, yz)	$[xyz, z(x^2-y^2)]$

"T3 Examination, Dec-2021"

SEMESTER	III	DATE OF EXAM	09.12.2021
SUBJECT NAME	Modern Organic Synthetic Techniques	SUBJECT CODE	CHH615 B
BRANCH	Chemistry	SESSION	2021-2022 (工)
TIME	09:00 - 12:00	MAX. MARKS	100
PROGRAM	M.Sc Chemistry (Organic)	CREDITS	4
NAME OF FACULTY	Dr. Jaya Tuteja	NAME OF COURSE COORDINATOR	Dr. Jaya Tuteja

Note: All Questions are compulsory

Q.	NO.	QUESTIONS	MARKS	CO	S LEVEL BLOOM'	PI
	Q1	Demonstrate the reactivity difference between Li aluminium Hydride or Sodium borohydride, with suitable examples?	3	CO1	BT4	1.3.2
	Q2	With the help of suitable examples state the difference between region and chemoselectivity?	2	CO2	BT2	1.3.2
PART-A	Q3	What is the final organic product of the reaction shown? 1.CH ₃ OH, H 2.LiAlH ₄ 3.H 4.PCC 5.(Ph) ₃ P=CH ₂	3	CO1	ВТЗ	1.3.2
	Q4	Why do Suzuki couplings need a base?	2	CO2	ВТЗ	1.3.2
	Q5	Does Swern oxidation work with tertiary alcohols?	2	CO3	BT2	1.3.2
PA	Q6	State suitable reagent for synthesis of diketone?	2	CO3	BT4	1.3.2
PART-B	Q7	Explain reductive cleavage of C = O double bond?	3	CO3	BT4	1.3.2
	Q8	How will you bring out the conversions of carboxylic acid to alcohols? State with suitable example?		CO4	BT3	1.3.2

1.8		MATIL				
	Q9	What happens when benzene is added to potassium permanganate?	3	CO5	BT2	1.3.2
	Q10	Which is more reactive enol or enolate and why?	3	CO5	BT4	1.3.2
	Q11	Give a brief on stabilized and unstabilized Phosphorous ylide?	4	CO5	ВТ3	1.3.2
PA	Q12	State the process for epoxide and cyclopropane formation from αβ-unsaturated carbonyl compounds?	5	CO5	BT4	1.3.2
PART-	Q13	Why are crown ethers very important in medicine and organic synthesis?	5	CO5	ВТ3	1.3.2
С	Q14	What are the advantages of polymer supported reagents explain with the help of suitable example?	5	COS	ВТ2	1.3.2
	Q15	What is phase-transfer catalyst used for and what is the phase transfer process?	5	CO5	втз	1.3.2
	Q16	Design the synthesis of alkenes with high regioselectivity & stereoselectivity	5	CO5	BT4	1.3.2
	Q17	Explain some reactions of enol and enolates?	5	CO5	BT3	1.3.2
	Q18	With the help of suitable examples discuss one and two group C-C disconnections?	5	CO6	BT2	1.3.2
	Q19	Why is Retrosynthesis important and How do we assess the quality of a synthesis of a particular organic compound?	5	CO6	BT4	1.3.2
PART-D	Q20	OH MgBr + 1) Et ₂ O 2) H ₂ O MgBr + 1) Et ₂ O 2) H ₂ O OMe + 2 CH ₂ Mgl 1) Et ₂ O 2) H ₃ O CH ₂ Mgl 1) Et ₂ O 2) H ₃ O 1) Et ₂ O 2) H ₃ O 1) Et ₂ O 2) H ₃ O		CO6	BT4	1.3.2
	Q21	Discuss the role of functional group interconversion (FGI) in reterosynthesis with suitable examples?	4	CO6	BT3	1.3.2

Q22	Define umpolung? What reaction is related to the concept of umpolung?	3	C06	BT2	1.3.2
Q23	What Is The "Retro" Diels-Alder Reaction, Explain with suitable example?	4	CO6	BT4	1.3.2
Q24	Propose a retrosynthetic analysis of the following compound. Your answer should include both the synthons, showing your thinking, and the reagents that would be employed in the actual synthesis. O NHEt2 Proparacaine Me		CO6	BT5	1.3.2
Q25	Propose a retrosynthetic analysis of the following compounds. Your answer should include both the synthons, showing your thinking, and the reagents that would be employed in the actual synthesis.		CO6	BT5	1.3.2

......

"T3 Examination, Dec-2021"

SEMESTER	3rd Photochemistry & Pericyclic	DATE OF EXAM SUBJECT CODE	13.12.2021 CHH619
NAME	Reaction	SESSION	Morning
BRANCH	3 hrs	MAX. MARKS CREDITS	100 4
PROGRAM NAME OF FACULTY	MSc Sangita Banga	NAME OF COURSE COORDINATOR	Sangita Banga

Note Part 1 Fach question is of 10 marks, attempt any two of three

Part B. Each question will be of 20 marks and attempt any four from Part B.

Q.M	NO.	QUESTIONS	MARKS	CO	BLOOM'S LEVEL	PI
	1(A)	I splain the mechanism of dimerization of 1.3- butadiene in solution in the presence of acetophenone and benzil sensitiser	2.5	CO2	BT2	2.1.1
	1(B)	Trans isomer are geometrically more stable then	2.5	CO2	BT2	2.1.1
-	1(C)	higher than I rans in mixture on irradiation How pericyclic reaction differs from normal reaction Give some important characteristics of pericyclic reaction	2.5	CO4	вті	2.1.1
PART	1(D)	Discuss the mechanism of 1, 2 alkyl shift in substituted aromatics by Prismane Intermediate.	2.5	CO2	BT2	5.1.1
T-A	2(A)	What is paterno-buchi reaction? Give an example in support of your answer.	2.5	CO2, CO3	BT2	5.1.1
	2(B)	What is meant by conrotatory & disrotatory movement 'I aplain with example	2.5	CO2	BT2	5.1.1.
	2(0)	What are group transfer reactions? Explain with the support of suitable example	2.5	CO2, CO4	BT3	5.1.1
	2(D)	Weste a note on photodimerisation of u.fl-	2.5	CO2, CO3	BT2	2.1.1

Q5(A	With the help of FMO show that [2+2] cycloaddition reaction is photochemically allowed and thermally forbidden.	5	CO4	втз	2.2.1
4 (C)	Give product for the following reaction & explain the detailed mechanism through which the reaction is carried out. (i) Me (ii) Me h h h h h h h h h h h h h	5X2	CO3, GO5	BT4	9.1.2, 10.3.1
4(B)	Using PMO method prove that Cope rearrangement occurs preferentially through a chiar like rather than boat like transition state.		CO1, CO4	BT4	1.1.1. 2.2.1
Q4(A	[1,3] Sigmatropic shift of hydrogen is thermally forbidden but photochemically allowed. Explain	5	CO2, CO4	ВТ3	5.1.1
3(B)	Complete the reactions: (i) Ph ho ho (iii) Ph ho Direct (iiii) C-COOCH ho C-COOCH	2.5X3	CO3, CO4	ВТЗ	9.1.2.1
3(A)	Suggest mechanism for the reaction given below has he has the complete the reaction given below the complete the complete the reaction given below the complete the c	2.5	CO1, CO2	ВТЗ	1.1.1

Discuss why this addition is stereospecific in		co2, co5	втз	2.2.1,
were the excited reactants Explain your		CO2, CO4	BT4	2.2.1,
molecule (B) Which the products cycloaddition reaction with cyclopentadiene to cycloaddition reaction with cyclopentadiene to give two different products. Identify the products formed in the reaction with the help of proper movement of bonds and arrows. Base (B) $= \frac{1}{(9+2)}$ Final Problems	5	CO2, CO5	BTS	2.2.1,
Complete the reaction given below give proper explanation for your answer. B A B A C R	5	CO2, CO5	BT4	2.2.1,
Explain the mechanism of 1,3 dipolar reaction with the help of frontier molecular orbital	5	CO2, CO4	вт3	2.2.1
What type of cycloaddition occurs in Reaction [1]? Draw the product of a similar process I Reaction [2]. Would you predict that these reactions occur under thermal or photochemical conditions?	5	CO2, CO5	BT4	2.2.1, 10.3.1
	Discuss why this addition is stereospecific in nature Predict whether the [4+2] cycloaddition could be photoinduced if the dienophile, instead of diene were the excited reactants. Explain your answer. The reaction of compound (A) with base gives molecule (B) which undergoes [2+2] cycloaddition reaction with cyclopentadiene to give two different products. Identify the products formed in the reaction with the help of proper movement of bonds and arrows. O Base (B) Final Product A Explain the mechanism of 1,3 dipolar reaction with the help of frontier molecular orbital diagram. What type of cycloaddition occurs in Reaction [1]? Draw the product of a similar process I Reaction [2]. Would you predict that these reactions occur under thermal or photochemical conditions?	Discuss why this addition is stereospecific in nature Predict whether the 4+2 cycloaddition could be photoinduced if the dienophile, instead of diene were the excited reactants. Explain your answer. The reaction of compound (A) with base gives molecule (B) which undergoes [2+2] cycloaddition reaction with cyclopentadiene to give two different products. Identify the products formed in the reaction with the help of proper movement of bonds and arrows. Base (B) Final Freeducts	Discuss why this addition is stereospecific in nature Predict whether the [4+2] cycloaddition could be photoinduced if the dienophile, instead of diene were the excited reactants. Explain your answer. The reaction of compound (A) with base gives molecule. (B) which undergoes [2+2] cycloaddition reaction with cyclopentadiene to give two different products Identify the products formed in the reaction with the help of proper movement of bonds and arrows. Solution 1.3 dipolar reaction with the help of proper explanation for your answer. Explain the mechanism of 1.3 dipolar reaction with the help of frontier molecular orbital diagram. What type of cycloaddition occurs in Reaction [1]: Draw the product of a similar process I Reaction [2]. Would you predict that these reactions occur under thermal or photochemical conditions? 5 CO2, CO5	Discuss why this addition is stereospecific in nature Predict whether the [4+2] cycloaddition could be photoinduced if the dienophile, instead of diene were the exerted reactants. Explain your answer. The reaction of compound (A) with base gives molecule. (B) which undergoes [2+2] cycloaddition reaction with cyclopentadiene to give two different products Identify the products formed in the reaction with the help of proper movement of bonds and arrows. Solution [2+2] Final

	C6H5 [2]				
6(D)	How would you carry out conversion of cis 3,4-dimethyl cyclobutene to trans 3,4-dimethyl cyclobutene? Explain & give mechanism.		CO2	BT5	2.1.2
Q7(A	Draw & explain the correlation diagram for the conrotatory & disrotatory interconversion of cyclobutene -butadiene system.	5	CO2, CO4	вт3	2.4.2
7(B)	With the help of FMO approach, explain whether the following reaction will be allowed thermally or photochemically.	5	CO4	BT4	2.3.1
7(C)	Write the products of following electrocyclic reactions & write whether the reaction will proceed in conrotatory or disrotatory fashion. Also give the stereochemistry of the products. (i) (ii) (iii) (iii) (iii) (iv) (iv)	2.5X4	CO2, CO5	BT4	2.3.1. 10.3.1

Q8(A	In case of ring closure reaction of 1.3-butadiene, explain the selection rules by Huckle Mobius	5	CO4	втз	2.4.2
8(B)	Complete the reaction given below and explain the mechanism for the formation of product. Also mention which name reaction it is known as.	5	coz	BT4	2.1.2
	O Ph Compation of Endo product as	2.5	CO2	вт2	2.1.1
8(C)	Give reason for the formation of Endo product as main product with the help of suitable example. Reactivity of Diels Alder reaction increases by introduction of electron withdrawing substituent in dienophile. Give reason for your answer	2.5	co2	вт2	2.1.1
8(D)	through an example. Predict the missing reactant/ product formed in the given reaction:				
	Not + COOE! hv COOE! + ?	2.5X2	CO2, GO5	втз	2.2.1, 10.3.1
8(E)			*****	k**	

DEPARTMENT OF MANAGEMENT

"T3 Examination, Dec-2021"

SEMESTER	- III	DATE OF EXAM	73/12/2021
SUBJECT NAME	Basics of Economics	SUBJECT CODE	MCS 231
BRANCH	BA B.Ed, B.Sc. Physics, B.Sc. Mathematics	SESSION	Morning
TIME	9:00-10:30 am	MAX. MARKS	40
PROGRAM	BA B.Ed, B.Sc. Physics, B.Sc. Mathematics	CREDITS	2
NAME OF	Srishti Bathla	NAME OF COURSE	Srishti Bathla

r	2	John H
	١.	0

Q.NO.	QUESTIONS	MA RK S	ADD RESS ED	BLOOM'S LEVEL
Q1	Will the first slice of pizza give you the same amount of satisfaction/ utility as the third slice of pizza? Why/ Why not? Explain the law behind it with the help of example	5	CO1	L3
Q2	You bought some FMCG goods from the market worth Rs. 2000. Which type of market do these goods belong? What are the other types of markets in an economy? Distinguish between them with the help of some real-life examples	5	CO4	L3

Q3	Wha	it law of p in detail	roducti	on app	lies in the	long run? E	xplain the	5	CO3	L2
Q4	Due	to increas	se in pri	ce, the	market de	mand falls	is 100 units. to 60 units. nand is (-)4.		CO2	L3
Q5					g the Supp nelp of exa	oly of a com imples.	modity.	5	CO4	L2
Q6						vith the cha aphic repres		5	CO2	L1
Q7		Indian Economy is facing a fall in its GDP. What do you think must be reasons for the same? Comment.						5	CO1	L5
	Out put 0 1 2 3 4 5 6 7	Total Variab le cost 0 60 90 110 150 230 350 510	Mar ginal Cost	Total	Averag e Fixed Cost	Average Variable cost	Avera ge Total Cost	5	CO3	13
Q8	8	710						5	CO3	L3

DEPARTMENT OF MANAGEMENT

"T3 Examination, Dec-2021"

SEMESTER	TIL	DATE OF EXAM	3/12/2021
SUBJECT NAME	INTODUCTION TO FINANCE	SUBJECT CODE	MCS232
BRANCH	Bein, B Ed. Cor	SESSION	MORNING
TIME	9:00-10:30 am	MAX. MARKS	40
PROGRAM	Rea, B Ed. Car	CREDITS	2
NAME OF FACULTY	DR. RASHI BANERJI/ DR. POOJA KAPOOR	NAME OF COURSE COORDINATOR	DR. RASHI BANERJI/ DR. POOJA KAPOOR

Q.NO.	QUESTIONS	MAR KS	CO ADDRE SSED	BLOO M'S LEVE L
Q1(A)	Explain its features, merits and demerits of sole proprietorship?	5	COI	LI
Q1(B)	Why banks are called financial intermediaries? What are the three roles of financial intermediaries?	5	COI	L2
Q2(A)	Why analysis of financial statements is important? Give example/format of the three financial statements.	5	CO2	LI
Q2(B)	Explain the significance of Break Even Analysis with the help	5	CO2	L2
Q3(A)	What are the differences between equity and preference capital? What is the cost of capital incurred through raising these capitals?	5	соз	L3
Q3 (B)	Explain the advantages and disadvantages of raising capital from Debentures.?	5	соз	L2_
Q 4 (A)	Why the consideration of time value of money is important in financial decision making?	5	CO4	L2
O4 (B)	What is the importance of capital budgeting decisions in long term decision making of a firm?	5	CO4	13

"T3 Examination, -DEC 2021"

SEMESTER	3 rd	DATE OF EXAM	15.12.2021
SUBJECT NAME	ENVIRONMENTAL SCIENCES	SUBJECT CODE	СНН137
BRANCH	FAA/HCM/OM/EFB	SESSION	I
TIME	9:00 AM-11:00AM	MAX. MARKS	60
PROGRAM	BBA	CREDITS	4
NAME OF FACULTY	Dr Vinayak V Pathak	NAME OF COURSE COORDINATOR	Dr Vinayak V Pathak

Note: All questions are compulsory.

Part A and Part B: MCQ/ Short answer type questions. Each question carries 2 marks.

Part C and Part D: Long answer type questions. Each question carries 10 marks.

Q.NO.		QUESTIONS	MARK S	CO ADDRESSE D	BLOOM' S LEVEL	PI
	1(A)	What do you understand by Green revolution?	2	CO1	BT1	
P,	1(B)	Define the term hydrosphere. Explain the distribution of water resource on earth.	2	COI	BT1, BT2	
PART-A	1(C)	Explain the significance of Forest resources. Differentiate between the deforestation and Afforestation.	2	COI	BT1	
·A	1(D)	What is Geothermal Energy? Explain its significance.	2	COI	BT1	
	1(E)	Define the term sustainable development.	2	COI	BT1	
: À	Q2(A)	What is Ecosystem? Differentiate between natural and man made ecosystem.	2	CO2	BT1	
PART-B	2(B)	Explain Lentic and lotic ecosystem.	2	CO2	BT1	
	2 (c)	Explain the term eutrophication and Bio- magnification.	2	CO2	BT1	
	2(D)	What do you understand by ecological pyramids? Explain different types of pyramid found in Ecosystem.	2	CO2	BT2	

F	2(E)	Differentiate between pioneer and climax community with example.	2	CO2	BT1, BT2
ART	Q.3	Explain the sources of solid waste generation and its harmful environmental impact. What are the strategies for solid waste management.	10	CO3	BT3, BT4
	Q.4	What do you understand by Air pollution? - Explain cause, impact and its control methods.	10	CO3	вт3
P.		What do you understand by demography? Write a brief notes on followings: (i) Mortality			
ART		(ii) Natality (iii) Population Pyramid (iv) Proposition Control			
-	Q.5	(iv) Population Growth curve	10	CO4	BT3
	Q.6	How information technology is playing a significant role in health care sector and Environmental management?	10	CO4	BT4

DEPARTMENT OF EDUCATION AND HUMANITIES

T3 Examination, Dec-2021 (SET A)

200

The second secon	And the second s		
SEMESTER	V	DATE OF EXAM	03/12/21
SUBJECT NAME	Applied Philosophy	SUBJECT CODE	EDS 288
BRANCH	EFB/ HCM/OM	SESSION	Morning
TIME	9.00 am-10.30 am	MAX. MARKS	40
PROGRAM	BBA	CREDITS	2
NAME OF FACULTY	Dr. Savita Sharma	NAME OF COURSE COORDINATOR	Dr. Savita Sharma

Note

All questions in Part A are compulsory. Each question carries 2 marks.

Attempt any four Questions in Part B. Each question carries 8 Marks.

Q.	NO.	QUESTIONS	MARKS	CO ADDRESS ED	BLOOM' S LEVEL	P I
	01	Line to a secretical uses of Philosophy	2	COL	BTI	
1	Q.1 Q.2	List down practical uses of Philosophy. Briefly explain core principles of Philosophy of	2	CO2	BT2	
PART-A	7.7	Rabindra Nath Tagore. What idea does Democracy hold for you, being an	2	CO3	BT3	
-	Q.3	Indian National. Secularism is the baseline to promote Indian	2	CO4	BT5	
	Q.4	Diversity'. Justify with example. Compare and Contrast Idealism and Naturalism with reference to their ideas about Knowledge, Reality and	8	COL	BT4	
	Q.5	Critically analyze the philosophy of Mahatma Gandhji	8	CO2	BT4	
PAI	Q.6	in the modern context. Reflect upon the idea on One India in the backdrop of different kinds of existing diversity.	8	CO3	BT5	
PART-B	0.7	Spirituality is the common underlying base beneath all religion. Support your answer with suitable examples.	8	CO4	ВТ4	
	Q.8	Explain three branches of Philosophy in Detail.	8	COI	BT4	
	0.9	Which aspect of Steve Jobs's life inspires you the	8	CO2	BT3	t settle
	Q.10	most and why?				

"T3 Examination, December-2021"

	13 Examination, Dece	chioci zozi		
SEMESTER	V	DATE OF EXAM	10.12.2021	
SUBJECT NAME	Transition Elements Coordination compounds and Chemical Kinetics	SUBJECT CODE	CHH312-T	
BRANCH	Education	SESSION	2021-2022 (II)	
TIME	1:00 PM to 4:00 PM	MAX. MARKS	80	
PROGRAM	BSc BEd	CREDITS	3	
NAME OF FACULTY	Dr. A. Jayamani	NAME OF COURSE COORDINATOR	Dr. A. Jayamani	

Note: All questions are compulsory. Kindly allow scientific calculator.

	Q.NO.	QUESTIONS QUESTIONS	MA RKS	CO ADDRES SED	BLOOM'S LEVEL	I
	Q1(A)	Which of the following arrangements does not represent the correct order of the property stated against it? (i) $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$: paramagnetic behaviour (ii) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$: ionic size (iii) $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$: stability in aqueous solution (iv) $Sc < Ti < Cr < Mn$: number of oxidation states	1	COI	ВТ3	
	1(B)	Identify the ore not containing iron (i) chalcopyrites (ii) carnallite (iii) siderite (iv) limonite	1	COI	BT2	
	1(C)	All the metals form oxides of the type MO except (i) copper (ii) barium (iii) silver (iv) lead	1	COI	ВТ2	L
PART-A	1(D)	Zinc and Mercury donot show variable valency like d-block elements because (i) they are soft (ii) their d shells are complete (iii) they have only two electrons in their outermost subshell (iv) their d shells are incomplete	1	COI	BT2	
	1(E)	Which of the following is not a principal physical and chemical characteristics of interstitial compounds? (i) They have high melting points, higher than those of pure metals. (ii) They are very hard, some borides approach diamond in hardness. (iii) They reduce the metallic conductivity, (iv) They are chemically inert.	1	COI	BT2	

A. Jayouani

Identify the incorrect statement among the following (i) d-Block elements show irregular and erratic chemical properties among themselves (ii) La and Lu have partially filled orbitals (iii) The chemistry of various lanthanoids is very similar (iv) 4f and 5f orbitals are equally shielded			· · · · · · · · · · · · · · · · · · ·			
(At. nos. Ce = 58, Sm = 62, Eu = 63, Yb = 70) (i) Ce ²⁺ (ii) Sm ²⁺ (iii) Eu ²⁺ (iv) Yb ²⁺ 1(II) Lanthanide contraction is caused due to (i) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge (iii) the appreciable shielding on outer electrons by 5d electrons from the nuclear charge (iii) the same effective nuclear charge from Ce to Lu (iv) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge 1(I) Larger number of oxidation states are exhibited by the actinoids than those by the lanthanoids, the main reason being (i) 4f orbitals more diffused than the 5f orbitals (ii) lesser energy difference between 5f and 6d than between 4f and 5d orbitals (iii) more energy difference between 5f and 6d than between 4f and 5d orbitals (iv) more reactive nature of the actinoids than the lanthanoids 1(J) Which of the following pairs of elements cannot form an alloy? (i) Fe, Hg (ii) Fe, Cr (iii) Zn, Cu (iv) Hg, Na Q2(A) How does the conductivity of [Co(NH ₃) ₈ Cl ₃ and [Co(NH ₃) ₈ Cl]Cl ₂ differ from each other? Write the reactions that can prove the difference. 2(B) Write down the formula of hexamminecobalt (III)chloride and tetracarbonyl nickel (0) and mention the charge on the complex ion. 2(C) Write down the postulates of crystal field theory 2(C) Justify how spectrochemical series will be useful for determining high spin and low spin complexes.		1(F)	(i) d-Block elements show irregular and erratic chemical properties among themselves (ii) La and Lu have partially filled d orbitals and no other partially filled orbitals (iii) The chemistry of various lanthanoids is very similar	1	COI	BTI
(i) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge (ii) the appreciable shielding on outer electrons by 5d electrons from the nuclear charge (iii) the same effective nuclear charge from Ce to Lu (iv) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge 1(I) Larger number of oxidation states are exhibited by the actinoids than those by the lanthanoids, the main reason being (i) 4f orbitals more diffused than the 5f orbitals (ii) lesser energy difference between 5f and 6d than between 4f and 5d orbitals (iii) more energy difference between 5f and 6d than between 4f and 5d orbitals (iv) more reactive nature of the actinoids than the lanthanoids 1(J) Which of the following pairs of elements cannot form an alloy? (i) Fe, Hg (ii) Fe, Cr (iii) Zn, Cu (iv) Hg, Na Q2(A) How does the conductivity of [Co(NH ₃) ₈]Cl ₃ and [Co(NH ₃) ₈ Cl]Cl ₂ differ from each other? Write the reactions that can prove the difference. 2(B) Write down the formula of hexamminecobalt (III)chloride and tetracarbonyl nickel (0) and mention the charge on the complex ion. 2(C) Write down the postulates of crystal field theory 2 CO2 BT3 2(D) Justify how spectrochemical series will be useful for determining high spin and low spin complexes.		1(G)	(At. nos. $Ce = 58$, $Sm = 62$, $Eu = 63$, $Yb = 70$)	1	COI	BT4
The larger number of oxidation states are exhibited by the lanthanoids, the main reason being (i) 4f orbitals more diffused than the 5f orbitals (ii) lesser energy difference between 5f and 6d than between 4f and 5d orbitals (iii) more energy difference between 5f and 6d than between 4f and 5d orbitals (iv) more reactive nature of the actinoids than the lanthanoids (iv) more reactive nature of the actinoids than the lanthanoids (i) Fe, Hg (ii) Fe, Cr (iii) Zn, Cu (iv) Hg, Na Q2(A) How does the conductivity of [Co(NH3)6]Cl3 and [Co(NH3)6Cl]Cl2 differ from each other? Write the reactions that can prove the difference. 2(B) Write down the formula of hexamminecobalt (III)chloride and tetracarbonyl nickel (0) and mention the charge on the complex ion. 2(C) Write down the postulates of crystal field theory 2 CO2 BT3 2(D) Justify how spectrochemical series will be useful for determining high spin and low spin complexes.		1(H)	(i) the appreciable shielding on outer electrons by 4f electrons from the nuclear charge (ii) the appreciable shielding on outer electrons by 5d electrons from the nuclear charge (iii) the same effective nuclear charge from Ce to Lu (iv) the imperfect shielding on outer electrons by 4f electrons from	1	COI	BTI
Which of the following pairs of elements cannot form an artify: (i) Fe, Hg (ii) Fe, Cr (iii) Zn, Cu (iv) Hg, Na Q2(A) How does the conductivity of [Co(NH ₃) ₆ Cl ₃ and [Co(NH ₃) ₅ Cl] Cl ₂ differ from each other? Write the reactions that can prove the difference. 2(B) Write down the formula of hexamminecobalt (III)chloride and tetracarbonyl nickel (0) and mention the charge on the complex ion. 2(C) Write down the postulates of crystal field theory 2 CO2 BT2 2(D) Justify how spectrochemical series will be useful for determining high spin and low spin complexes.		1(1)	than those by the lanthanoids, the main reason being (i) 4f orbitals more diffused than the 5f orbitals (ii) lesser energy difference between 5f and 6d than between 4f and 5d orbitals (iii) more energy difference between 5f and 6d than between 4f and 5d orbitals	1	COI	BT2
CO2 BT3 CO2 BT4 CO2 CO2 BT4 CO2 CO2 BT4 CO2 CO2 BT4 CO2 CO2		1(J)	Which of the following pairs of elements cannot form an alloy? (i) Fe, Hg (ii) Fe, Cr (iii) Zn, Cu (iv) Hg, Na	1	COI	BT3
2(B) Write down the formula of nexaminate count (in) characteristics and tetracarbonyl nickel (0) and mention the charge on the complex ion. 2(C) Write down the postulates of crystal field theory 2 CO2 BT2 2(D) Justify how spectrochemical series will be useful for determining high spin and low spin complexes. BT4		Q2(A)	differ from each other? Write the reactions that can prove the	2	CO2	BT4
high spin and low spin complexes.	PART-B	2(B)	tetracarbonyl nickel (0) and mention the charge on the complex	2	CO2	BT3
high spin and low spin complexes.		2(C)	Write down the postulates of crystal field theory	2	CO2	BT2
2(E) What is chelate effect? Explain with an example 2 CO2 BT1		2(D)	Justify how spectrochemical series will be useful for determining high spin and low spin complexes.	2	CO2	BT4
		2(E)	What is chelate effect? Explain with an example	2	CO2	BT1

PART-C	3(A)	Explain on the methods used to determine of rate law and order of a reaction	7	CO3	вті	
	3(B)	Compare the radioactivity decay and first order reaction with reactions and rate law.	3	CO3	BT2	-
	4(A)	Describe how solvent, light and pressure influence the rate of a reaction.	3	CO3	ВТ2	_
	4(B)	What is the rate constant for a first order reaction if the concentration of reactant decreases from 800 moldm ⁻³ to 50 moldm ⁻³ in 2x10 ² sec?	4	CO3	BT4	_
	4(C)	Write short notes on collision theory with proper illustrations.	3	CO3	BT4	_
	5(A)	Illustrate the zero order, first order and second order reactions graphically by integrated rate law.	4	CO3	BT4	_
	5(B)	Describe in detail about (i) the concept of activation energy (ii) transition state theory	6	CO3	ВТ3	_
	6(A)	Explain the concept of surface chemistry and write down the fields where surface phenomenon has applications.	3	CO4	BT2	_
	6(B)	Define catalysis and explain the different characteristic of catalyzed reactions.	4	CO4	BT3	_
	6(C)	Write short notes on the classification of catalysis.	3	CO4	BT2	
	7(A)	What are the different types of adsorption isotherm? Explain Freundlich isotherm and Langmuir adsorption isotherm with illustrations	7	CO4	BT2	
	7(B)	Write short notes on Gibbs isotherm.	3	CO4	BTI	
	8(A)	Compare Brunauer, Emmett, Teller Adsorption isotherm with Langmuir isotherm. Write down the applications and drawbacks of BET adsorption isotherm	6	CO4	BT4	
	8(B)	Illustrate the six types of BET isotherm graphically and how they determine the characteristic of adsorbents.	4	CO4	BT3	
		**************************************	****	**		

"T3 Examination, Dec-2021"

SEMESTER	v	DATE OF EXAM	02/12/2021	
SUBJECT NAME	Physical Chemistry-IV	SUBJECT CODE	СНН301В-Т	
BRANCH	Chemistry	SESSION	II	
TIME	01:00-4:00	MAX. MARKS	100	
PROGRAM	B.Sc. (H) Chemistry	CREDITS	4	
NAME OF FACULTY	Dr. Arpit Sand	NAME OF COURSE COORDINATOR	Dr. Arpit Sand	

Note: Part A: All questions are compulsory. Questions will be of short answer type

Part B: All questions are compulsory. Questions will be of descriptive type or numerical.

Q.NO.		QUESTIONS QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
Ρ,	1(A)	A microscope using suitable photons is employed to locate an electron in an atom with in distance of 0.1Å. What is the uncertainty involved in the measurement of velocity? Mass of electron=9.1×10 ⁻³¹ kg. Planck's Constant (h)=6.626×10 ⁻³⁴ J	5	CO1	вт3	1.3.1
PART-A	1(B)	Discuss Hook's law and write Hermit Second Order Differential equation	3+2	CO1	BT3 BT4	1.3.1
-A	1(C)	Explain Variation theorem & steps involves application of methods	6	CO2	вт3	1.3.2
	1(D)	Discuss VB method taking example of two	4	CO2	BT4	1.3.3
PART-B	Q2(A)	The pure rotational spectrum of gaseous molecule CN consists of a series of equally spaced lines separated by 3.7987 cm ⁻¹ . Calculate the internuclear distance of the molecule The atomic masses are ¹² C=12.011g mol ⁻¹	10	соз	втз	1.3.
	02(B)	Explain selection Rule for P Q R branches of	5	CO4	BT4	1.3.

Q2(C)	Deduce expression for microwave spectra of diatomic molecule	5	CO4 CO3	BT4	1.3.
	The inter nuclear distance (i.e., bond length) of carbon monoxide molecule is 1.13Å. Calculate the energy (in joules and eV) and angular velocity of this molecule in first excited rotational level. The atomic masses are ¹² C=1.99×10 ⁻²⁶ kg		CO5	BT4	1.3
Q3(A)	$^{16}O=2.66\times10^{-26}$ kg h=6.626×10 ⁻²⁶ Js	10	COS		
2(D)	Deduce expression for infrared spectra and concept on anharmonicity developed by Morse in 1929.	10	CO4	BT3 BT4	1.3
3(B) Q4(A)	Discuss the quantum mechanical concept of Raman Effect & origin of Rayleigh stokes and ant stokes lines expression & diagram	10	CO5	BT4	1.3
	What is the principal of NMR spectroscopy	5	COS	BT3 BT4	1.3
Q4(B)	Short note on Franck-Condon principle and	5	CO4 CO5	вт3	1.3
Q4(C)	draw its diagram				1.3
	Discuss ESR Spectroscopy with its Spectra and	5	CO5	BT4	1.3
Q5(A)	Diagram Distinguish Raman Spectra and Infrared	5	CO5	BT5	1.3
Q5(B)	spectra minimum 7 points Discuss the Significance if Chemical shift in			BT4	1.3
Q6 (A)	NMR spectroscopy	5	COS		
Q6	eroups with examples	5	CO5	BT4	1.3
(B)	Discuss Auxochromic groups with examples ******* END	****	*****	****	51

Durland on State Biness University under section 21 of the UGC set, 1956

Career Development Centre "End Semester Examination, Dec' -2021"

Roll No:-....

Semester: V

Date of Exam: 312.2.21

Branch: Physics/Chem/Maths

Time: 90 Minutes

Scasion . I

Name:....

Subject: Career Skills-II Subject Code: CDO-303

Program: B.Sc Max.Marks:50

Instructions: All questions are compulsory. Each question carries multiple options. No negative marking. Calculator is not allowed. Answers are to be filled in the answer table only. Answers written outside the answer table won't be considered.

Answer Table:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

APTITUDE

Q1Find the area of the triangle formed by the vertices (4, 5), (10, 12) and (-3, 2)

A) 3

B) 4.5

C) 4

D) 3.5

Q2 Find the missing character in each of the following questions.

D) 2031 A)201 C) 1625 B) 731 Q3 The dimensions of a room are 25 feet * 15 feet * 12 feet. What is the cost of white washing the four walls of the room at Rs. 5 per square feet if there is one door of dimensions 6 feet * 3 feet and three windows of dimensions 4 feet * 3 feet each? D) Rs. 4530 C) Rs. 3560 A) Rs. 4800 B) Rs. 3600 Q4 The volumes of two cones are in the ratio 1: 10 and the radii of the cones are in the ratio of 1: 2. What is the length of the wire? D) 4:5 C) 3:5 A)2:5 B) 1:5 Q5. The ratio between the perimeter and the breadth of a rectangle is 5 : 1. If the area of the rectangle is 216 sq. cm, what is the length of the rectangle? D) Data inadequate C) 24 cm B) 18 cm A)16 cm Q6 A cube of side one meter length is cut into small cubes of side 10 cm each. How many such small cubes can be obtained? D)10000 C) 1000 B) 100 A) 10 Q7 The volumes of two cones are in the ratio of 1:10 and the radii of the cones are in the ratio of 1:2, what is the ratio of their vertical heights? D) 4:5 C) 3:5 B) 1:5 A)2:5 Q8 If the radius of the circle is diminished by 10%, then its area is diminished by : D) 36% C) 20% B) 19% A)10% Q9 How many dots lie opposite to the face having three dots, when the given figure is folded to form a cube? D) 6 C)5 B) 4 A)2

)

)

Q10 Choose the box that is similar to the box formed from the given sheet of paper (X).

A)1 only

- B) 2 only
- C) 1 and 3 only
- D) 1,2,3 and 4 only

Q11 The sector of a circle has radius of 21 cm and central angle 135°. Find its perimeter?

A)91.5 cm

B) 93.5 cm

C)92.5 cm

D) 94.5 cm

Q12 Which one will replace the question mark?

A)18

D) 6

Q13 Which one will replace the question mark?

A)11

B) 14

C) 10

D) 12

Q14 The edge of a cuboid are in the ratio 1:2:3 and its surface area is 88 sq. cm. The volume of cuboid is ?

A)24 cubic cm

B) 48 cubic cm

C) 64 cubic cm

D) 120 cubic cm

Q15 The cone of a height 9cm with diameter of its base 18cm is carved out from a wooden solid sphere of radius 9cm. The percentage of the wood wasted is:

A)25%

B) 30%

C) 50%

D) 75 %

Q16 Which one will replace the question mark?

- A)47
- B) 45
- C) 37

D) 35

Q17 A metallic sphere of radius 12 cm is melted and drawn into a wire, whose radius of cross section is 16 cm. What is the length of the wire?

- A)45 CM
- B) 90 CM
- C) 18CM

D) None of these

Q18 Which one will replace the question mark?

3	15	4
7	38	5
3	?	5

- A)15
- B) 19
- C)20

D) 18

Q19 The radius of a wheel is 22.4 cm. What is the distance covered by the wheel in making 500 resolutions.

- A)252 m
- B) 704 m
- C) 352 m

D) 808 m

Q20 A dice is numbered from which of the following states	m 1 to 6 in different nents is necessarily	ways.l	f 1 is adjacen	t to 2, 4 and 6, then
A)2 is opposite to 6			B) 1 is adjace	ent to 3
C) 3 is adjacent to 5			D) 3 is oppos	site to 5
Q21 A dice is numbered from If 1 is opposite to 5 and 2 is A)4 is adjacent to 3 and 6 C) 4 is adjacent to 5 and 6	om 1 to 6 in different s opposite to 3, then	ways.	B) 2 is adjace	ent to 4 and 6 ent to 3 and 4
Q22 A metallic sheet is of roof its corners, a square is coins and the second s	ut off so as to make	ith dim an op	ensions 48 m en box. If the l	x 36 m. From each ength of the square
is 8 m, the volume of the bo A) 4830	B) 5120	C) 64	20	D) 8960
Q23 The curved surface ar	rea of a cylindrical pi	illar is 2	264 m2 and its	s volume is 924 m3.
Find the ratio of its diameter A) 3:7	B) 7 : 3	C) 6:	7	D) 7:6
Q24 An arc 30° in one circ three times the radius of the	le is double an arc in ne first. Then the ang	n a sec gle sub	ond circle, the tended by the	radius of which is arc of the second
circle at its centre is: A)3*	B) 4°	C) 5°		D) 6°
Q25 At 3:40, the hour han	B)125°	C)130	0	D)133
Q26 An accurate clock sh the hour hand rotate when	ows 8 o'clock in the	mornin	g. Through ho	w may degrees will on?
A) 144*	B) 150°	C)16	8*	D) 180°
Q27 A clock is set right at the true time when the clo	5 a.m. The clock los	ses 16 on 4th	minutes in 24 day?	
A) 11pm	B)12pm	C) ip	m	D)2pm
Q28 The area of the squa % more than the area of the the difference between the	the rectangle. If the p	enme	of a rectangle er of the recta	as its side is 108 1/3 ngle is 28 units, find
A)8	B) 12	C) 6		D) 2
Q29 How many times in a A)22	B)44	C)24		ngles? D)46
Q30 The reflex angle bet A)255*	ween the hands of the B)105°	C)28	k at 9:30 is. 35*	D)150°

Verbal Ability

has an error:		ns, find	d out which part of	the se	ntence	
Q31 A. In management, as unstructured and	you rise higher,	B. the	problems you face b	ecome	•	
C. you just can't fall back of E. No error	n	D. the	tools you have beer	n taugh	t.	
Q32. A. Remember that you B. and your success depend C. you are able to give and E. No error	ids on the support		m your team membe	rs		
Q33. A. The teacher promis C. if they came E. No error	sed	B. that she would explain it D. before school the following day.				
Q34. A. My friend asked mo	е	B. if I D. No	can lend him my error			
In the following question parts, which are labelled proper sequence.	ns, there is a senter a, b, c and d, to pro	nce wi	th jumbled up parts the correct sentenc	e. Cho	range these lose the	
Q35. a. She wondered if	b. work hard for a li	ving	c. he would e	ever	d. because	
he was so rich. A. abcd	B.abdc		C.acbd		D.bcda	
Q36.a.l was certain c. be allowed to attend A.abcd	B. abdc		b. the management d. that subordinates C.adcb	meetir would D.bcd	not	
Choose the right option Q37.Weather report: "It's s A. there is snow	even o'clock in Fran B. it's snowing	kfurt a	nd" C.it snows	D. it s	nowed	
Q38. What time A. the train leaves? C.is the train leaving?			B.leaves the train? D.does the train lea	ive?		

Use the correct for	n of tenses from the	options given below each	question:
	a maid by next mon B.Employed		D.Will have employed
Q40. He nev A. Has, swum, drov C.Was, swimming,	er since he ne wned drowned	B.Had, swul	m, was drowning n, had drowned
Pick out the most e sentence meanings	ffective word(s) from	the given words to fill in th	e blank to make the
Q41. He lives near	r a lovely o B. piece	of countryside. C. section	D. stretch
	power cut in the are B. send off	a, the companies are force C. put off	d to men. D. lay off
Q43.A sanguine ou A.Rationalist	utlook is associated v B. Socialist	vith the C. Optimist	D. Philanthropist
Q44. The synonyn A. Momentous	n for the word "WISE B. Pragmatic	" is: C. Judicious	D. Delay
Q45. The antonyn A.Frequent	n for the word "PERR B. Regular	ENIAL" is C. Lasting	D. Rare
Q46. A. When the that perhaps the B B. It is said that Ga C. One of the Buddhard smile. D. The origin of Zeromes from the 14 E. The Buddha sile disciples tried to in A. CEBDA	h. y gathered together, uddha was tired or ill utam Buddha gather dha's disciples, Maha n Buddhism is ascrib th century. ently held up & twirled terpret what this mea B. DBAEC ch, I was invited to pr	red his disciples one day for the search and twinkled his eart though none of them was compared to the paper on the topic resent a paper on the topic	y silent & some speculated r a Dharma talk. the flower & broke into a he earliest source which eyes, several of his is correct. D. CADBE
B. The economic of	risis hadn't become ç	he 21st century as well. grave then. the biggest economic crisis	s since 1929.

D. The key difference between then and now is that the	ne old power structures have finally
disappeared.	

E. Now even the US is pleading for financial help from China.

A. BCADE

B. ABCDE

C. CDEAB

D. DEABC

Q48. Which of the following is not true w.r.t. resume writing?

A. While drafting the resume, keep busy readers in mind

B. While editing, do a triple check

C. All the headings should be of one font style

D. A good qualification, from a good institute is the only thing that the recruiters are interested in.

Q49. A resume should be:

A.As lengthy as you want it to be

B. A colorful and visually attractive

C. A carefully crafted document not exceeding one side of an A-4 sheet.

D. None of the above

Q50. Your appearance shows:

A. Your level of sophistication

C. Your credibility

B. Your professionalism

D. All of the above

Albertaera 1 2021

DEPARTMENT OF CHEMISTRY

"T3 Examination, December-2021"

SEMESTER	V	DATE OF EXAM	06/12/2021
SUBJECT NAME	Biochemistry & Natural Products	SUBJECT CODE	СНН 302 ВТ
BRANCH	Chemistry	SESSION	11
TIME	1:00PM-4:00 PM	MAX. MARKS	100
PROGRAM	B.Sc. (H) Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Megha Bansal	NAME OF COURSE COORDINATOR	Dr. Megha Bansal

Note: All questions are compulsory.

Bloom's Level: L1-Remembering; L2-Understanding; L3-Applying; L4-Analyzing; L5-Evaluating;

L6-Creating

Q	NO.	QUESTIONS	MAR KS	CO ADDR ESSED	BLOO M'S LEVE L	PI
	1(A)	Discuss the characteristics shared by both adenine and cytosine bases.	2.5	COI	L3	1.1.2
	1(B)	Compare and contrast structural and functional properties of purines and pyrimidines.	2.5	COI	L3	1.1.1
	1(C)	How uridine can be converted to thymidine. Write suitable chemical reaction.	2.5	CO1	L2	1.2.1
PA	1(D)	Discuss important functions of different types of RNA.	2.5	coi	L2	1.2.2
PART-A	1(E)	Write the name and structure of two amino acids containing nonpolar, aliphatic R groups.	2.5	CO2	L2	1.2.1
	1(F)	Explain the structure of alanine at pH 2 and pH 10.	2.5	CO2	L3	1.1.1
	1(G)	Consider the abbreviation Gly-Ala-Ser for a tripeptide. Describe N-terminal and C-terminal amino acid.	2.5	CO2	L2	1.2.2
	1(H)	Briefly discuss primary structure of protein.	2.5	CO2	L3	4.1.2

- In							
6							
3		Q2(A)	the lotte claracian in the				
0			(a) Draw all four and arrange them in pairs of enantiomers. (b) Identify which stereoisomers are described.				
0			(b) Identify which stereoisomers are d sugars and which are I	5	CO3	L3	5.2.1
0		2(B)	Denue				
0	Sign		Draw and name the structure of the aldohexose that is epimeric with D-glucose at each of the following positions: (a) C2 (b) C3 (c) C4				
0	PA		(a) C2 (b) C3 (c) C4	5	CO3	L4	4.1.2
3	PART-B	2 (C)	What is the basis of cyclic structure of D(+) glucose and L(-) glucose. Establish ring structure of D(+)				
3	E		glucose. Establish ring structure of glucose D and L both forms.	10	CO3	L4	4.1.2
0		Q 3(A)	Explain following observations:				
3			(a) D-glucose epimerizes in base but D-glucitol does not (b) NaBH ₄ reduction of D-fructose gives two alditols, but the	5	CO3		
			same reduction of D-glucose gives only one	,	COS	L4	4.1.2
3	No.	3(B)	Discuss how D-glucose can be converted to D-arabinose.				
	17-5-17	3 (C)		5	CO3	L5	7.2.1
		(0)	What is glycosidic linkage. Discuss the structure of sucrose and lactose. Comment upon the reducing properties of both	10	CO3	L5	7.2.1
		Q	On the basis of molecular orbital theory explain why benzene				7.2.1
	3 145	4(A) 4(B)	is colorless while p-nitro phenol is colored.	5	CO4	L2	7.2.1
	PART-C		Which one of the following has highest λ max and why $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	5	CO4	L3	5.2.1
		4 (C)	Write short notes on: (a) Direct dyes (b) Mordant Dyes (c) Disperse dyes	10	CO4	L3	5.2.1
	Section 1	5(A)	Discuss the synthesis of Safranine. Elaborate its mode of application and uses.	5	CO4	L3	11.2.
100	2	5 (B)	How is Congo red prepared. Classify this dye on the basis of structure and application.	5	CO4	L4	11.2.
	2_	5 (C)	How are phenolphthalein and fluorescein prepared. What happens when excess alkali is added to phenolphthalein.	10	CO4	L4	11.2.
			**************************************	NAMES OF	1 1 1 1 1 1 1	T-1,158-1	100

DEPARTMENT OF Chemistry

"T3 Examination, Dec 2021"

SEMESTER	v	DATE OF EXAM	8.12.2021
SUBJECT NAME	ENVIRONMENT AND SUSTAINABLE DEVELOPMENT	SUBJECT CODE	CHS234
BRANCH	ME & CST	SESSION	I
TIME	1.5 HRS	MAX. MARKS	40
PROGRAM	в.тесн.	CREDITS	2
NAME OF FACULTY	Dr. Meena Kapahi	NAME OF COURSE COORDINATOR	Dr. Meena Kapahi

Note: Attempt all questions. Word limit for questions with 2 and 3 marks - min. 200 words. Word limit of for questions with 7 marks - min. 450 words

Q. NO.	QUESTIONS	MARKS	со	BL	PI
1	Indigenous knowledge is the knowledge unique to a given culture. Would you defend or disprove "Growing gender gap may interfere with its transmission". Justify.	3	4	5	
2	Explain the need of integrating sustainability throughout all engineering disciplines and the role engineers have in this.	3	1	2	
3	The 17 SDGs are supported by the 169 "Targets" which are specific objectives and 230+ "indicators". What is the requirement of such a large number of indicators?	3	1	2	
4	Which of the following is not a suitable strategy for sustainable development? Comment indicating the reason. A) Rely more on organic farming B) Promoting public transport C) Safeguarding the habitats for indigenous communities, flora and fauna D) Not compromising on the needs of present and future generations	3	2	2	
5	World Tourism Organization (WTO) has pointed out the vast developmental potential of tourism, particularly with reference to the developing nations, like India. A fundamental trait of the tourism sector is its ability to link the economic, social, cultural and environmental aspects of sustainability and to act as a driving force for their mutual enhancement. Justify how sustainable	7	.4	5	

	tourism can be an important tool in achieving SDGs? Explain with respect to three SDGs as examples.				
6	How are SDGs different from MDGs?	7	1	1	
7	As head of the Corporate Social Responsibility division of your company, what factors would you consider while preparing a sustainability report of your organization?	7	3	4	
8	As the world population continues to grow, much more effort and innovation will be urgently needed in order to sustainably increase agricultural production, improve the global supply chain, decrease food losses and waste, and ensure that all have access to nutritious food. The SDGs include a significant number of interconnected objectives related to agriculture and food. SDG 2 focuses explicitly on food by seeking to "end hunger, achieve food security and improved nutrition and promote sustainable agriculture", but multiple other goals relate to challenges in the food system. Explain with respect to two SDGs as examples	7	4	3	

"T3 Examination, Dec-2021"

		The second secon	
SEMESTER	VTH	DATE OF EXAM	9-12-2021
SUBJECT NAME	ANALYTICAL CHEMISTRY & SPECTROSCOPY	SUBJECT CODE	СНН303В Т
BRANCH	Chemistry	SESSION	Evening
TIME	1:00pm-4:00pm	MAX. MARKS	100
PROGRAM	B.Sc.(H)	CREDITS	4
NAME OF FACULTY	Dr. Priti Gupta	NAME OF COURSE	Dr. Priti Gupta

Note: All questions are compulsory.

	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PART-A	1(A)	Calculate the formula weight of PdCl ₂ to correct number of significant figures.	2	COI	BT2	
>	1(B)	Calculate molarity of a solution containing 50 g of NaCl in 500 g of solution and having density 0.936 g/cm ³ .	2	COI	BT2	
	1(C)	Distinguish between relative and absolute error. How is relative error expressed?	3	COI	ВТ2	
	1(D)	Discuss the role of Analytical Chemistry in Pharmaceutical industries.	3	COI	ВТ3	
	1(E)	Describe the range of the electromagnetic radiations useful for Ultraviolet and Infrared spectroscopy.	2	CO2	BT4	
	1(F)	What is the effect of Ultraviolet or visible light on organic compounds?	2	CO2	BT2	
	1(G)	When a UV light is passed through the given solution, the radiant power is reduced to 50%, Calculate the absorbance.	2	CO2	BT2	
	1(H)	Discuss the effects of polar solvents on: 1) $n \to \pi^*$ 2) $\pi \to \pi^*$				
PART-B		Define the following: a)Chelate extraction b) Extraction involving ion pair	4	CO2	BT3	-
~	2(A)	formation	8	CO3	BT2	

		Discuss basic principle of Solvent extraction	7		
	2(B)	technique and discuss about two factors influence the Extraction Efficiency.	7	CO3	BT3
	2(C)	How column efficiency in chromatography is calculated? Why the efficiency of a chromatographic column does increases with an increasing number of theoretical plates?	8	CO3	BT4
	2(D)	What is meant by the term R ₁ value? On what factors does the value of Rf depends?	5	CO3	BT2
	3(A)	Discuss the principle of Thin -Layer Chromatography. In what way it is superior to paper chromatography?	6	CO3	BT2
.	3(B)	Write brief notes on : i. Partition chromatography ii. Retention factor iii. Retention time	6	CO3	BT2
Tava	4(A)	Discuss in detail the applications of TGA.	6	CO4	втз
	4(B)	Define the term Thermogravimetry and classify it into various techniques	6	CO4	BT2
	5(A)	With the schematic diagram describe the various components and their function in DSC apparatus	8	CO4	ВТ3
	E/D)	Depicts the differential thermal analysis investigation of calcium acetate monohydrate at a uniform programmed heating rate of 12°C/minute.	6	CO4	BT4
	5(B)	Di tutto de Celles in Conductesmatria	6	C04	B14
		Discuss in details the following Conductrometric titrations: 1)Strong acid with a weak base			
	6(A)	2)Weak acid with a weak base	8	CO4	BT2
		A mixture of CaO and CaCO3 is analysed by TGA. The result indicates that mass of the sample decreases from 250.6 mg to 190.8 mg only between 600°C and 900°C.			
		Calculate the percentage of calcium carbonate in	,		
	6(B)	the mixture.	6	CO4	BT3

......

MANAV FACHNA

DEPARTMENT OF CHEMISTRY

"T3 Examination, Dec:-2021"

SEMESTER	VII	DATE OF EXAM	03/12/21
SUBJECT NAME	Spectroscopy, Natural	SUBJECT CODE	CHH 315-T
· · · · · · · · · · · · · · · · · · ·	Products and Heterocyclics		
BRANCH	Education	SESSION	I
TIME	9:00 to 12:00 Noon	MAX. MARKS	80
PROGRAM	BSc BEd	CREDITS	
NAME OF	Dr. Shilpa Sharma	NAME OF	Dr. Shilpa Sharma
FACULTY		COORDINATOR	
		COORDINATOR	W >

Note: All questions are compulsory.

	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	ΡI
PART-A	1(A)	Calculate the concentration in (microgram/ ml) of a solution of organic compound (MM= 211.2) in 0.11M HCl giving an absorption at its λmax 281nm of 0.612 in 4cm cell. The molar absorptivity at 281mm is 5372.	6	CO1	втз	
-A	1(B)	Define the term 'Chromophore'. How will you detect the presence of carbonyl group in aldehydes and ketones.	4	CO1	BT2	
	Q2(A)	Why are amino acids are called amphoteric compounds? Write the structure of alanine at pH 2 and pH 10.	2	CO2	BT2	
PART-	2(B)	Explain isoprene rule and its significance.	2	CO2	BT2	
₹T-B	Q3(A)	How can we know the hydroxyl groups in alkaloids (a) Write the reaction (oxidation of alcohols) (b) differentiate between primary secondary and tertiary alcoholic group	2	соз	втз	
	3(B)	Portrait the Haworth and Fischer projection Glucose and Lactose	4	соз	BT2	
RT-	Q4(A)	Explain various theories of color and constitution	6	CO4	BT1	

++++++

		****** END	****	*****	****
	Q9(A)	Justify the following statements: (a) Thiophene is more aromatic in nature than furan (b) Furan is not stable in acids although it has aromatic character (c) Furan undergoes Diels Alder reaction but thiophene doesn't.	7	C06	вт3
J	8(B)	Explain the synthesis of furan, pyrrole and thiophene by Paal Knorr synthesis?	6	C06	BT2
PART-D	Q8(A)	What happens when pyrrole is treated with methyl iodide?	3	C06	вт3
PΑ	7(B)	Why pyridine is more basic than pyrrole while benzene is less basic than pyrrole.	7	C06	BT4
	Q7(A)	Discuss the mechanism of some typical electrophilic substitution reactions of pyrrole, furan and thiophene. What is the order of reactivity of these heterocycles towards electrophiles?	7	C06	вт3
PART-C	6(B)	Discuss the initiation, propagation and termination steps in free radical polymerization of polythene. What is the role of inhibitors in free radical polymerization	7	COS	втз
	Q6(A)	What is the structure of terylene, nylon 6 and nylon 6,6. How are they manufactured? Show the process through which the molecular chains are held together in nylon 6,6 and nylon 6.	6	CO5	BT2
P,	5(B)	Explain in detail the malarial infection phenomenon in our body and give some antimalarial drugs for its treatment	5	CO4	втз
1,	Q5(A)	Ibuprofen is an anti-inflammatory drug. Explain the mechanism of ibuprofen drug in the body.	6	CO4	втз