

DEPARTMENT OF SCIENCES

"End Term Examination, Jan-June-2023"

SEMESTER	T	DATE OF EXAM	25.05.2023
SUBJECT NAME	Physical Chemistry-I	SUBJECT CODE	СНН102-Т
BRANCH	Chemistry	SESSION	AND THE PROPERTY AND TH
DURATION	3 hrs (01:00 - 04:00 PM)	MAX. MARKS	100
PROGRAM	B.Sc (Hons.)	CREDITS	4
NAME OF FACULTY	Dr. Harsha Devnani	NAME OF COURSE COORDINATOR	Dr. Harsha Devnani

Note: Part-A: Attempt all questions.

Part-B: Attempt any four questions.

	Part-B:	Attempt any four questions.				
Q.	NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Define the terms refractive index and molar refraction.	4	CO2	BT2	
	1(B)	What is meant by Reynold's number? Discuss its significance.	4	CO2	BT2	
PAR	1(C)	How is optical activity related to refractive index?	4	CO2	BT3	λ,
PART-A	1(D)	Calculate the degrees of freedom of following molecules: a. H_2O b. C_2H_2	4	CO1	BT3	
	1(E)	Explain the terms collision number and collision diameter.	4	CO1	BT1	
	Q2(A)	Calculate the interplanar spacing for a cubic system between the following sets of planes: (a) 110 (b) 111 (c) 222. Assume a is the edge length of the unit cell.	10	CO3	BT3	
PART-B	2(B)	Define the terms solubility and solubility product of a substance. Explain any 2 applications of the concept of solubility product.	10	CO4	BT2,4	
	Q3(A)	Explain why does a solution of a weak acid and its salt behave as a buffer? Derive the relation between the pH of the solution and the relative	10	CO4	BT4	

	amounts of the acid and the salt present in it.				1
	Explain why a solution containing a strong acid				
	and its salt does not behave as a buffer?				
	What is lattice energy? Derive Born-Lande				
3(B)	equation for the lattice energy of an ionic solid.	10	C03	BT1,2	
	Discuss in detail the phenomenon of hydrolysis		000	DII,Z	1
	of salts. Illustrate your answer taking example				
Q4(A)	of a mixture of a weak acid and strong base.	10	CO4	BT2	
	Derive the Bragg equation for X-ray				
4(0)	crystallography.				
4(B)		10	CO3	BT2,4	
	a. Calculate pH of a solution prepared by				
	mixing 50 mL of 0.1 M NaOH and 50 mL				
	of 0.2 M CH ₃ COOH. $K_a = 1.8 \times 10^{-5}$				
	b. Calculate the pH of 1.0×10^{-3} M solution				
OFCA	of HCl				
Q5(A)	2	10	CO4	BT3	
	Discuss briefly following types of defects:				
	a. Frenkel Defect	·			
5(B)	b. Metal excess defect				
3(1)		10	CO3	BT2	
	Discuss the proton transfer theory of acids and				
Q6(A)	bases. What is meant by a conjugate pair?	10	CO4	BT1	
	Sketch the seven crystal systems since the				
6(B)	Sketch the seven crystal systems giving their dimensions.	10	con	7	
-(-)	difficusions.	10	CO3	BT3	

END

DEPARTMENT OF SCIENCES

"End Term Examination, June-2023"

SEMESTER	п	DATE OF EXAM	29.05.2023
SUBJECT NAME	Inorganic Chemistry-I	SUBJECT CODE	СНН103В-Т
BRANCH	Chemistry	SESSION	I
TIME	180 Min (01:00 -04:00PM	MAX. MARKS	100
PROGRAM	BSc(H) Chemistry	CREDITS	4
NAME OF FACULTY	Dr. A Jayamani	NAME OF COURSE COORDINATOR	Dr. A Jayamani A JayaMami
Note: All questions	are compulsory.		A opit somo

Q.NO. **QUESTIONS** MARKS CO **BLOOM'S** PI **ADDRESSED** LEVEL 1(A) Describe in detail the shapes of s, p, and d 5 CO₁ BT3, BT4 orbitals with diagrams. 1(B) Write short notes on radial and angular 5 CO₂ BT3 distribution functions Explain how the periodic trends vary for 5 1(C) CO₃ BT2, BT3 electron gain enthalpy in comparison to ionization enthalpy 1(D) Define electronegativity and explain the 5 CO₃ BT4 following (i) On the Pauling scale the electronegativities of nitrogen and oxygen are respectively 3.0 and 3.5. Why is oxygen more electronegative than PART-A nitrogen? b) On the same scale, the electronegativity of Sulphur is 2.5. Why is Sulphur less electronegative than oxygen? PAR Q2(A) Explain the concept of the radius ratio rule and CO4 BT2 mention its limitations 4

	2(B)	Compare the hcp and ccp in ionic crystals	6	CO4	BT4
	2(C)				
		Explain the Born Haber Cycle with an example.	10	CO4	BT1, BT3
	Q3(A)	Draw the Lewis structure of sulphate ion (SO ₄ ²⁻) in which four O atoms are bonded to S atoms.	4	CO4	BT4
	3(B)	Write short notes on equivalent and non- equivalent hybrid orbitals	4	CO4	BT3
	3(C)	No compound in nature is 100 % Ionic or 100 % covalent, Justify this statement with the help of Fajan's rule. Also, mention which is more ionic in NaCl or KCl and NaF or NaBr with reasons.	6	CO4	BT4
	3(D)	The dipole moment of KCl is 3.336×10^{-29} coulomb metre which indicates that it is a highly polar molecule. The interatomic distance between k ⁺ and Cl ⁻ is 2.6×10^{-10} m. Calculate the dipole moment of the KCl molecule if there were opposite charges of one fundamental unit located at each nucleus and calculate the percentage ionic character of KCl. (e=1.602 x 10^{-19} C).	6	CO4	ВТ3
	Q4(A)	How the percentage ionic character can be calculated from the electronegativity difference?	4	CO5	BT3
	4(B)	What are band theories of solids? Explain how it supports differentiating conductors, semiconductors and insulators	8	CO5	BT2
	4(C)	Explain elaborately various defects in solids	8	CO5	BT2, BT6
	Q5(A)	Draw a flowchart for identifying the type of intermolecular forces present in a molecule and mention which of the following can form hydrogen bonding with water dimethyl ether, methane, formic acid and Fluoride ions, and give a reason.	10	CO5	BT5, BT6
PART -C		(i) Which substance in each of the following pairs would you expect to have the higher boiling point? Explain why. (a) Ne or Xe, (b) CO ₂ or CS ₂ , (c) CH ₄ or Cl ₂ , (d) F ₂ or LiF, (e) NH ₃ or PH ₃ and (f) NH ₃ and CH ₄ (ii) Mention the types of intermolecular forces that exist between molecules (or basic units) in each of the following species: (a) benzene, (b)	6+4	CO5	BT2, BT4

chloroform (c) PF ₃ and (d) CS ₂ .	
PART -B ********** END ******	*****

DEPARTMENT OF SCIENCES

"End term Examination, May-June 2023"

SEMESTER	II	DATE OF EXAM	02.06.2023
SUBJECT NAME	Organic Chemistry-I	SUBJECT CODE	CHH 104 B -T
BRANCH	Chemistry	SESSION	1
TIME	3.0 hrs (01:00 -04:00)	MAX. MARKS	100
PROGRAM	BSc(H) Chemistry	CREDITS	100
NAME OF FACULTY	Dr. S.K. Shukla	NAME OF COURSE COORDINATOR	Dr. S.K. Shukla

Note: All questions are compulsory.

	0.110		THE CONTRACTOR SALES CONTRACTOR			
	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1	Explain the optical isomerism in tartaric acid acid	6 marks	CO2	BT2	
	2	Explain the conformations of ethane with detailed digramatic representations	4 marks	CO2	BT3	
PART-A	3	Write the mechanism of the following reaction $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 marks	CO1	BT4	
	4	Define Hybridization. Explain the energy level diagram of the sp^3 hybridization in nitrogen	4 marks	C01	BT1	
	5	 What happens when: (a) Sodium acetate reacts with sodium hydroxide. (b) Alkyne reacts with Lindlar's catalyst. (c) Propylene reacts with any hypohalous acid (d) 1,2-dibromopropane heated with sodamide. (e) 1-butyne react with silver nitrate in presence of ammonium hydroxide. 	10 marks	CO3	BT4	
PART-B	6	Complete the following reactions and give their detailed mechanism: (a) H ₂ C=CH ₂ + Br ₂ Inert Solvent ? (b) H ₃ C-C=CH ₂ + Cl ₂ 500°C ?	6+6 marks	CO3	ВТЗ	

Page 1 of 2

4		Explain the following in detail:				5310011 - 1910011
	7	 (a) Mechanism of bromination & how it is different from chlorination (b) Difference between combustion and pyrolysis. What will be the products of methane in presence of sufficient and insufficient supply of oxygen 	5+5 marks	CO3	ВТ2	
	8	How to convert: (a) How to convert acetylene into 1-Butyne (b) Alkyne in to alkane through the formation of alkene.	4+4 marks	C03	BT1	
PART-C	9	 What happens when (a) Benzene undergoes ozonolysis and the product formed further treated with Zn/H₂O (b) Benzene reacted with hydrogen in presence of nickel or platinum at 150°C under pressure (c) Chlorobenzene reacts with magnesium followed by dilute hydrochloric acid 		CO4	BT4	
رد	10	Explain the aromatic character of Pyrrole	4 marks	CO4	BT1	3
	11	Give the detailed mechanism of Friedel-Crafts Acylation of benzene. What will be the final product when it follows the Clemmensen reduction. Explain with chemical reaction.	10 marks	CO4	ВТЗ	
**************************************	12	How to convert: (a) Benzene into nitrobenzene. Give detailed mechanism (b) Benzene into benzene sulphonic acid. Give detailed mechanism.	5+5marks	CO4	BT2	
		Explain the following in detail: (a) Toluene do not have any lone pair of electron to share with benzene ring but still shows ortho para directing behavior, why? Show the chemical representation to explain. (b) Substitution in disubstituted benzenes with suitable examples.	6+4 marks	CO4	BT4	
		****** FND *	******	e ale ale ale ale ale ale ale ale ale al		

END

MANAV RACHNA UNIVERSITY **DEPARTMENT OF SCIENCES**

"End-Term Examination, June-2023"

SEMESTER	IV	DATE OF EXAM	19.05.2023
SUBJECT NAME	ORGANIC CHEMISTRY-III	SUBJECT CODE	СНН207В-Т
BRANCH	Chemistry	SESSION	I
TIME	09:00 AM-12:00 PM	MAX. MARKS	100
PROGRAM	B.Sc. (H) Chemistry	CREDITS	4 management of the contract o
NAME OF FACULTY	Dr. Jaya Tuteja	NAME OF COURSE COORDINATOR	Dr. Jaya Tuteja

Note: All questions are compulsory.

Q	. No.	Questions	Marks	Co Address ed	Bloom's Level	Pl
	1(A)	What happens when nitrile is boiled with an aqueous strong acid or alkali? Give the mechanism of acid hydrolysis of nitriles?	5	CO1	L2 .	1.1.
PART-A	1(B)	Explain the reason why secondary amines are more basic than primary amine but less basic than tertiary amines?	5	CO1	L3	1.1.
Α	1(C)	Write down the preparation and properties of chloramine T?	5	CO2	L3	1.2
	1(D)	Discuss the chemical properties of thioethers?	5	CO2	L3	1.2
	Q2(A)	Write a note on Haworth's synthesis of naphthalene.	7	CO3	L4	5.2
	2 (B)	1-naphthyl amine is a weaker base than aniline. Explain	3 .	CO3	L4	5.2
PART-B	2(C)	What happens when: (i) Phenanthrene undergoes oxidation with potassium dichromate and sulphuric acid or chromium trioxide in acetic acid (ii) Phenanthrene reacts with concentrated sulphuric acid at 120°C	5	CO3	L2	4.1
T-B	2(D)	Complete the following reaction by writing suitable reaction conditions in each step and name of all intermediates: $ \begin{array}{cccccccccccccccccccccccccccccccccc$	5	CO3	L3	4.1

	Q3(A)	Discuss the suitable mechanism for the nitration of naphthalene.	5	CO3	L3	7.2.
	3(B)	Anthracene undergoes addition and electrophilic substitution reactions at C-9 and C-10 positions. Justify it with the help of intermediate carbonium ion. Why addition and substitution is less favoured at C-1 and C-2 positions.	5	CO3	L4	7.2.
	3 (C)	How will you synthesize the following: a. Naphthylamine from naphthalene b. Anthraquinone from anthracene c. B-naphthol from naphthalene d. 1,4-naphthaquinone from naphthalene e. Diphenic acid from phenanthrene	10	CO3	L3	5.2.
10	Q4(A)	Represent the structure of furan by resonance, and explain why the dipole moment of furan is smaller than that of its saturated analogue, tetrahydrofuran.	5	CO4	L3	4.1.
	4 (B)	What happens when (i) Thiophene reacts with conc. H ₂ SO ₄ and iscetin (ii) Thiophene reacts with Conc. HNO ₃ at different temperatures	5	CO4	L4	7.2.
PART C	4 (C)	Describe one method of preparation and one property (physical and chemical) of the following: a) Furan b) thiophene c) pyrrole	10	CO4	L3	7.2.
	Q5(A)	Compare the reactivity's of Furan, pyrrole and thiophene.	5	CO4	L4	5.2.
	5(B)	Discuss electrophilic substitution in Pyridine.	5	CO4	L4	4.1.
	5(C)	Compare the basicity and reactivity of pyrrole and pyridine.	10	CO4	L4	7.2.

DEPARTMENT OF SCIENCES (Program-Chemistry)

"End Term Examination, Jan-June-2023"

		CONTROL OF THE PROPERTY OF THE	
SEMESTER	IV	DATE OF EXAM	22.05.2023
SUBJECT NAME	INORGANIC	SUBJECT CODE	СНН206В-Т
	CHEMISTRY-III		
BRANCH	CHEMISTRY	SESSION	IP T
DURATION	3 HOURS (9-12:00PM)	MAX. MARKS	100
PROGRAM	B.Sc. (H) CHEMISTRY	CREDITS	4
NAME OF	DR. EKTA RAWAT	NAME OF COURSE	DR. EKTA RAWAT
FACULTY		COORDINATOR	Dopit Suma

Note: All questions are compulsory.

ARRIVA		questions are compaisory.	10700101 N 1			
Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	
	1(a)	Draw a well labeled diagram of MOT of O ₂ molecule. Calculate bond order and mentions the number of unpaired electrons.	5	CO1	BT3	
PART-A	1(b)	"The molecules namely CH ₄ , NH ₃ and H ₂ O molecules contain the same number of electrons but their geometries are different". Explain?	5	CO1	BT2, BT3	
PA]	2(a)	How ionization energy vary in transition metals along the period and down the group?	7	CO2	BT4	
	2(b)	Discuss the chemistry separation of lanthanides by fractional crystallization method.	3	C02	ВТ3	
	3(a)	Using IUPAC norms write the formulas for the following: (i) Tetrahydroxozincate(II) (ii) Potassium tetrachloridopalladate(II)	2+2=4	CO3		
	3(b)	What is chelate effect? How does it enhance the stability of the complexes?	6	CO3	BT2, BT3	
PART-B	3(c)	On the basis of VBT, answer the following questions for the 6-coordinated complex ion/compounds: $[V(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ (i) What type of hybridization is involved? (ii) Whether the given complex ion is inner orbital complex or outer orbital complex? (iii) What is the magnetic behavior of the complexes?	5+5=10	,		
		Give the value of magnetic moment of each.		CO3	BT3, BT4	
	4(a)	Represent schematically the splitting of d-orbitals in tetrahedral fields.	4	CO3		
	4(b)	How does nature of central metal atom of a complex affect magnitude of CFSE?	6	CO3	BT3	
	4(c)	Calculate the value of number of unpaired electrons, magnetic moment and CFSE in terms of Δ_o/Δ_t of the following systems: (i)d ⁴ in weak field octahedral complex (ii) d ⁷ in tetrahedral complex	5+5=10	CO3	BT3, BT4	

	5(a)	Explain the following on the basis of HAB principle: (i) Occurrence of metals in nature.	4+4=8	CO4	BT3, BT4
		(ii) AgI ₂ is stable while AgF ₂ does not exist.			
PART-C	5(b)	How do you classify bases as hard and soft according to Pearson's rule?	6+4=10	CO4	BT3
	5(c)	Give limitations of HSAB principle.	2	CO4	BT2, BT3
	6(a)	On the basis of Lewis concept of acid and base, explain the relative order of the basic strength of NH ₃ , PH ₃ , AsH ₃ , SbH ₃ and BiH ₃ .	5	CO4	BT3, BT4
	6(b)	Discuss the Bronsted-Lowry concept of acid and base. What do you understand by conjugated acid and base? Explain with examples.	8	CO4	BT2, BT3
	6(c)	What is leveling and differentiating solvents? Explain with examples.	7	CO4	BT3, BT4

DEPARTMENT OF SCIENCES

"End Term Examination, June-2023"

SEMESTER	IV	DATE OF TWANT			
SUBJECT NAME	Polymer Chemistry	DATE OF EXAM SUBJECT CODE	26.05, 2023 CHH208B		
BRANCH	Chemistry	CECCAON			
DURATION	180 Minutes	SESSION MAX. MARKS	Z I		
PROGRAM	B.Sc. (H) Chemistry	CREDITS	100		
NAME OF FACULTY	Dr. Arpit Sand	NAME OF COURSE COORDINATOR	Dr. Arpit Sand		

Note: Note: Part-A&B: All questions are compulsory.

Q.1	VO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	P
PART-A	1	What do you mean by secondary structure of the polymers on the basis of configuration and confirmation	5	CO1	BT2	
-A	2	Write the short note Elastomers and liquid resins	5	CO1	BT3	
	3	derive equation for radical polymerization	5	CO2	BT3	
	4	Discuss Helix structures of the polymers	5	CO2	BT3	
D/ 177	5	Discuss concepts of sedimentation and viscosity average molecular weight of the polymers	5+5	CO3	BT3	S.
DT_D	6	Discuss PDI and its effect molecular weight distribution in the polymers	5	CO4	BT4	
	7	Explain the mechanism of cyclization in natural rubber	5	CO4 CO3	BT4	
	8	Staring from Boltzmann equation derive the formulation of Flory Huggins theory	10	CO4	BT2	
	9	Discuss effect viscosity of dilute polymer solutions	5	CO4	BT2 BT3	
1	10	Discuss bulk polymerization of styrene with chemical reactions only	5	CO5	BT4	

PAR	11	In the basis of molecular orbital theory discuss Band theory of conducting polymers	10	CO5	BT3 BT4	
RT-C	12	Discuss the formation use and application of following polymers 1. PVC 2. Polysulphides	10	CO4 CO5	BT3	
	13	Electrochemical preparation of polypropylenes by chemical reactions.	5	CO5	BT4	
	14	Write a short note on Supercapacitors	5	CO5	BT5	
	15	Discuss factors affecting properties of	5	CO5	BT4	
	16	Discuss the formation of polysuphone and uses.	5	CO5	BT3	
:	*	******* END *******	****	**		

DEPARTMENT OF SCIENCES

"End Term Examination-June 2023"

SEMESTER	4TH	DATE OF EXAM	30.05.2023
SUBJECT NAME	PHYSICAL CHEMISTRY-III	SUBJECT CODE	СНН205В-Т
BRANCH	CHEMISTRY	SESSION	I
TIME	3hrs (9:00AM-12:00PM)	MAX. MARKS	100
PROGRAM	B.Sc.(H)	CREDITS	4
NAME OF FACULTY	DR. PRITI GUPTA	NAME OF COURSE COORDINATOR	DR. PRITI GUPTA

Note: All Ouestions are compulsory.

¥	NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
	1(A)	Write the reduced phase rule equation for condensed systems.	2	CO1	BT1
	1(B)	Explain why in a phase diagram of water, solid - liquid line is almost vertical and slightly tilted towards left?	2	CO1	BT3
P/	1(C)	Determine the no. of Degrees of freedom in Liquid water and water vapor in equilibrium at a pressure of 1 atmosphere.	2	CO2	BT3
PART-A	1(D)	Explain: a) Metastable Equilibrium b) Critical point	4	CO2	BT2
1	1(E)	Define the various curves, points and areas involved in two component system with incongruent melting point with the help of phase diagram.	5	CO2	BT3
	1(F)	State the law of Chemical Equilibrium. How can it be derived on thermodynamic considerations	5	CO2	BT4
B-TGAG	Q2(A)	The specific conductance of an electrolyte decreases but the equivalent conductance and molar conductance increases with dilution. Justify why?	7	CO3	BT3

THE RESERVE AND			٦	1	I
		Discuss Faraday's Laws of electrolysis with			
	2(B)	their importance.	8	CO3	BT1
		What do you understand by cell constant? How			
		is it determined experimentally ?The specific			
		conductance of N/50 KCl solution is			
		0.0027650hm ⁻¹ cm ⁻¹ at 25°C.If the resistance of			
		the solution contained in the cell is 100 ohms,			
	2 (C)	calculate the cell constant.	9	CO3	BT4
		Describe the Hittorf's method of for			
		determining the transport no. of Ag+ and NO ³ -		×	
	2(D)	ions in solution of silver nitrate.	8	CO3	BT3
		Discuss Freundlich adsorption isotherm of a			
		gas on a solid surface. How will you prove that			•
	2 (77)	Langmuir adsorption isotherm is superior to		* * **	
(5354))(c) A256	2(E)	Freundlich adsorption isotherm?	8	CO3	
		What do you understand by Liquid Junction			
		Potential? Calculate the liquid junction			
	3(A)	potential at 25°C between two solutions of HCl			
		having mean ionic activities of 0.01 and 0.001,			
		respectively. The transference no. of H+ ions		001	
	4	in HCl may be taken as 0.83.	8	CO4	BT2
		Write short notes on:			
	3(B)	a)Potentiometric Titration			
て		b)Concentration cell without transference	0	004	DES
PART-C		W/L-4 i	8	CO4	BT3
3		What is meant by activity coefficient of an			
Ī	2(C)	electrolyte? How would you determine the		5	a
C	3(C)	mean ionic activity coefficient of HCl in a			
		given solution of acid.	7	004	DTO
		Devive Newstandie 1 CC C	7	CO4	BT2
		Derive Nernst equation showing effect of			
	3(D)	electrolyte concentration on the potential of an			
		oxidation reduction electrode.	0	CO4	D.T.2
			8	CO4	BT3
	3(E)	Describe various types of electrodes which can			
		be used for determining pH of the solution.	9	CO4	BT4

MANAV RACHNA UNIVERSITY DEPARTMENT OF SCIENCES

"End Term Examination, Jan-June2023"

SEMESTER	6 th	DATE OF EXAM	25.05.2023
SUBJECT NAME	Statistics - II	SUBJECT CODE	MAH205B
BRANCH	Chemistry	SESSION	
DURATION	3 Hours	MAX. MARKS	100
PROGRAM	B.Sc. (Hons.)	CREDITS	4
NAME OF FACULTY	Ms. Savitta Saini	NAME OF COURSE COORDINATOR	Ms. Savitta Saini

Vote: All questions are compulsory.

	Q.NO.		QUESTIONS												BLO OM' S LEV EL	PI
PART-A	1	An Analysis of production rejects resulted in the No of rejects per operator No. of 120 125 280 260 260 260 Calculate Mean.					36- 40	41-45 46-50 51-55 155 184 162					10	CO1	ВТ3	
PART-B	2	The following table gives the marks obtained by a group of 80 students in the examination. Calculate the variance. Marks 10- 14- 18- 22- 26- 30- 34- 38- 42- 46- 50						10	CO2	BT3						

	c , (g)	Two i	Two random samples X and Y were drawn from normal population and their values are												eir	•			
	3(a)	Y	27	16	26 42	27 35	23 32	22 34	18	24	41	19 43	30	37		10	CO3	BT4	
		Test whether the two populations have the same variance at 5% level of significance? ($\nu_1 = 9, \nu_2 = 11 \ F - value \ is \ 4.63$)												1					
		Ten workers were given a training programme with a view to shorten their assembly time for a certain mechanism. The results of the time and motion studies before and after the training programme are given below:																	
			Worker	1	. 2	2 .3	4	5		6	7	8	9	10					1
	3(b)	n	rst Stud (in ninutes)	1:	5 18	8 20	0 17	7 10	5	14	21	19	13	22		10	CO3	BT4	
PAI		S	Second Study (in minutes)	100	4 10	5 2	1 10) 15	5	18	19 '	16	14	20		,74 4		0	
PART-C		On the	basis oned the	f this o	data, c e asse	ean it	be co	nclud ?	ed th	at th	e trair	ning p	rogran	n has				· -	
		A set of 5 coins is tossed 3200 times and the number of heads appearing each time is noted. The results are as below:										h							
	4(a)		-0.	o. of ads	0	1	1	2		3	4		5	1 = X		10	CO3	BT4	
			Freq	uency	80)	570	110	0	900	50	0	50						Н
		Test th	e hypotl	hesis tl	hat th	e coir	is are	unbia	ised.		. ,	8	* 3				t.		
		Memor month. same un	y capac State w nits)	ity of hether	9 stuc the c	lents ourse	was to	ested effect	befor	e and	d after	a cou the d	irse fo	or a low (in	1.		- 100		
	4(b)		Before	10	15	9	3	7		12	16	17	4		: t'	10	CO3	BT4	
		2 2	After	12	17	8	5	6		11	18	20	3						
			4 .	X				. "							ă.		v		

. 1

		Two diffincreasidrug B.	ng weig	ht, 5 p	erso	ns we	re gi	ven d	rug A	and	7 per	rsons	ients were	for given				
	5 (a)		Drug A	8		12	13		9 .	3		*	9 3		10	CO4	BT4	
			Drug B	10		8	12	1	15	6		8	11					
		Do the tweight?	wo drug	s diff	er sig	nifica	antly	with	regar	d to t	heir (effect	in inc	creasing				
		Two ran	dom sar	nples	draw	n fro	m noi	rmal j	popul	ation	s are	:				5		
		San ple A	n 20	16	26	27	23	22	18	24 .	25	19			, , , , , , , , , , , , , , , , , , ,			2
PART-D	5(b)	San ple B	n 27	33	42	35	32	34	38	28	41	43	30	37	10	CO4	BT4	
Ü		Obtain es	stimates ons have	of the	e vari ame v	ances variar	s of th	ne poj	pulati	on ar	nd tes	st whe	ether t	wo		4		
		A survey informati	of 320 :	famili	es wi	th 5 o	childr	en ea	ich re	veale	d the	follo	wing				in .	
		N	lo. of bo	ys	5	4		3	2	2	1		0					
	6(a)	N	lo. of gi		0	1		2	3	3 -	'4		5		12	CO4	BT4	
Washing to			No. of families		14	56	1	10	8	8	40		12					
		Is the resu	ılt consi cobable?	stent	with	the hy	ypoth	esis t	hat m	nale a	nd fe	emale	birth	are				
	6(b)	The heigh 72. Those 73. Test w	of 9 ran	ıdoml	y cho	sen s	oldie	rs are	61,	52, 65	5, 66.	69. 7	70. 71	71 and , 72 and	.8	CO4	BT4	
		**	****	***	***	***	**	EN	ND	*:	***	***	****	****	***			

. .

Table 3: CHI-SQUARE (χ^2)

Significant Values χ^2 (α) of χ^2 Distribution Right Tail Areas for Given Probability α ,

 $P = P_r (\chi^2 > \chi^2 (\alpha)) = \alpha$ And is Degrees of Freedom (d.f.)

Degree of freedom (v)	***		Probabili	ty (Level of S	ignificance)		
freedom (1)	0 = .99	0.95	0.50	0.10	0.05	0.00	
1	.000157	.00393	.455	2.706		0.02	0.01
2	.0201	.103	1.386	4.605	3.841	5.214	6.635
3	.115	.352	2.366	6.251	5.991	7.824	9.210
4	.297	.711	3.357	7.779	7.815	9.837	11.341
5.	.554	1.145	4,351		9.488	11.668	13.277
6.	.872	2.635	5.348	9.236	11.070	13.388	15.086
7	1.239	2.167	6.346	10.645	12.592	15.033	16.812
8	1.646	2.733	7.344	12.017	14.067	16.622	18.475
9	2.088	3.325	8.343	13.362	15.507	18.168	20.090
10	2.558	3.940	1 1000	14.684	16.919	19.679	21.669
10 /	2.000	0.540	9.340	15.987	18.307	21.161	23.209
11	3.053	4.575	10.341	17.275	19.675	22.618	94.705
12	3.571	5.226	11.340	18.549	21.026	24.054	24.725 26.217
13	4.107	5.892	12.340	19.812	22.362	25.472	27.688
14	4.660	6.571	13.339	21.064	23.685	26.873	29.141
15	4.229	7.261	14.339	22.307	24.996	28.259	30.578
16	5.812	7.962	15.338	23.542	26.296	29.633	32.000
17	6.408	8.672	15.338	24.769	27.587	30.995	33.409
18	7.015	9.390	17.338	25.989	28.869	32.346	34.805
19	7.633	10.117	18.338	27.204	30.144	33.687	36.191
20	8.260	10.851	19.337	28.412	31.410	35.020	37.566
21	8.897	11.591	20.337	29.615	32.671	36.343	38.932
22	9.542	12.338	21.337	30.813	33.924	37.659	40.289
23	10.196	13.091	22.337	32.007	35.172	38.968	41.638
24	10.856	13.848	23.337	32.196	36.415	40.270	42.980
25	11.524	14.611	24.337	34.382	37.65	41.566	44.314
26	12.198	15.379	25.336	35.363	38.885	41.856	45.642
27	12.879	16.151	26.336	36.741	40.113	41.140	46.963
28	13.565	16.928	27.336	37.916 .	, 41.337	45.419	48.278
29	14.256	17.708	28.336	39.087	42.557	46.693	49.588
30	14.933	18.493	29.336	40.256	43.773	47.962	50.892

Note. For degrees of freedom (v) greater than 30, the quantity $\sqrt{2\chi^2} - \sqrt{2\nu - 1}$ may be used as a normal variate with unit variance.

	processing the second second
969	xibnəqqA

1.9446 1.9317 1.8389 1.7480 1.6587	1.9446 1.9317 1.8389 1.7480 1.6587		2.1045 2 2.0921 2 2.0035 1 2.0037 1 1.9174 1 1.8337 1	2.1768 2.1646 2.0772 2.0772 1.9926 1.9105 1.8307			Amelika et ingestativ da	PROCESSOR CONTRACTOR	2.5336 2.4495 2.3688 2.2900 2.2141	2.6896 2.6060 2.5252 2.4472 2.3719	2.9223 2.8387 2.7581 2.6802 2.6049	3.3158 3.2317 3.1504 3.0718 2.9957	4.1709 4.0848 4.0012 3.9201 3.8415	8 120
1.9736	:	2.0558			2.2501 2.2360 2.2390	2.3053 2.2913 2.2782	2.3732 2.3593 2.3463	2.4453 2.4324	2.5581 2.5454	2.7141	2.9467 2.9340	3.3404 3.3277	4.1960 4.1830	28 29
2.0075	2.0	2.0889	-	SANGER OF PARTICIPA	2.2821 2.2655		2.4047	2.4904 2.4741	2.5868	2.7426	2.9751	3.3690	4.2252 4.2100	26 27
476	2.0476	2.1282		2.2747	2.3201	2.3551	2.4422	2.5082	2.6207	2.7763	3.0088	3,4028	4.2597	24 25
07	2.0960	2.1757 2.1508	2.2504	2.3210	2.3661	2.3965	2.4638	2.5491	2.6613	2.8167	3.0491	3.4434 3.4221	4.3009 4.2793	23
12 5	2.1555 2.1242	2.2341	distance of	10 TO	2.3928	2.4471	2.5140	2.5990	2.7100	2.8661	3.0984 3.0725	3.4668	4.3248	21
2	2.1906	2.2686		2.4117	2.4563	2.5102	2.5767 2.5435	2.6283	2.7401	2.8951	3.1274	3.5219	4.3808	3 5
	2.2756	2.3522	2.4247	2.4935	2.4943	2.5480	2.6143	2.6987	2.8100	2.9647	3.1968	3.5915	4.4513 4.4139	18
	2.3275	2.4035	2.4753	2.5437	2.5876	2.6408	2.7066	2.7905	2.9013	3.0556	3.2874	3.6337	4.4940	16
	2.4589	2.5331	2.6037	2.6710	2.7144	2.7669	2.8321	2.9153	2.9582	3.1122	3.3439	3.7389	4.6001	4 7
~ ·	2.6464	2.7186	2.7876	2.8536	2.7964	2.8486	2.9134	2.9961	3.1059	3.2502	3.4903	3.8853	4.7272	ದ.ಸ
	2.7740	2.8450	2.9130	2.9782	3.0204	3.0717	3.1355	3.2172	3.2039	3.3567	3.5874	3.9823	4.8443	=
	3.1503	3.2184	3.2840	3.1373	3.1789	3.2296	3.2927	3.3738	3.4817	3.6331	3.8626	4.2565	5.1174	10 9
	3.4445	3.5108	3.5747	3.6365	3.6767	3.7257	3.7870	3.8660	3.6875	3.8378	4.0662	4.4590	5.3177	8
	3.8742	3.9381	3.9999	4.0600	4.0990	4.1468	4.2066	4.2839	4.3874	4.5337	4.7571	4.7374	5.5914	7 0
	-	5.8578	5.9117	5.9644	5.9988	4.8183	4.8753	4.9503	5.0503	5.1922	5.4095	5.7861	6.6079	, ₍₃
01 42	19.446 8.6602	8.7029	8.7446	8.7855	8.8123	8.8452	8.8868	8.9406	9.0135	9.1172	9.2766	6.9443	7.7086	ں م
		245.95	243.91	241.88	240.54	238.88	236.77	233.99	230.16 19.296	224.58 19.247	19.164	19.000	18.513	٠ ١٧ ٠
20		15	12	O. P.						1		100	161 16	-

X. 5% POINTS OF FISHER'S F-DISTRIBUTION

Table 2 : SIGNIFICANT VALUES t_v (α) OF t-DISTRIBUTION (TWO TAIL AREAS) [| t | > t_v (α)] = α

d.f.	PERMIT		Probabilit	y (Level of Si,	gnificance)	
(v)	0.50	0.10	0.05	0.02	0.01	0.00
1	1.00	6.31	12.71	31.82	63.66	636.62
2	0.82	0.92	4.30	6.97	6.93	31.60
3	0.77	2.32	3.18	4.54	5.84	12.94
4	0.74	2.13	2.78	3.75	4.60	8.61
5	0.73	2.02	2.57	3.37	4.03	6.86
6	0.72	1.94	2.45	3.14	3.71	5.96
7	0.71	1.90	2.37	3.00	3.50	5.41
8	0.71	1.80	2.31	2.90	3.36	5.04
9	0.70	1.83	2.26	2.82	3.25	4.78
8 9 10	0.70	1.81	2.23	2.76	3.17	4.59
11	0.70	1.80	2.20	2,72	3.11	4.44
12	0.70	1.78	2.20,	2.68	3.06	4.32
13	0.69	1.77	2.16	2:05	3.01	4.22
14	0.69	1.76	2.15	2.62	2.98	4.14
15	0.69	1.75	2.13	2.60	2.95	4.07
16	0.69	1.75	2.12	2.58	2.92	4.02
17	0.69	1.74	2.11	2.57	2.90	3.97
18 -	0.69	1.73	2.10	2.55	2.88	3.92
19 20	0.69	1.73	2.09	2.54	2.86	3.88
20	0.69	1.73	2.09	2.53	2.85	3.85
21	0.69	1.72	2.08	2.52	2.83	3.83
22	0.69	1.72	2.07	2.51	2.42	3.79
23	0.69	1.71	2.07	2.50	2.81	3.77
24	0.69	1.71	2.06	2.49	2.80	3.75
25	0.68	1.71	2.06	2.49	2.79	3.73
26	0.68	1.71	2.06	2.48	2.78	3.71
27	0.68	1.70	2.05	2.47	2.77	3.69
28	0.68	1.70	2.05	2.47	2.76	3.67
29	0.68	1.70	2.05	2.46	2.76	3.66
30	0.68	1.70	2.04	2.46	2.75	3.65
∞	0.67	1.65	1.96	2.33	2.58	3.29

DEPARTMENT OF SCIENCES

"End Term Examination, Jan-June-2023"

SEMESTER	<u>VI</u>	DATE OF EXAM	29.05.2023
SUBJECT NAME	Chemicals and Environment	SUBJECT CODE	CHH 310B
BRANCH	Chemistry	SESSION	End Sem
DURATION	3 hrs	MAX. MARKS	100
PROGRAM	B.Sc. (Hons) Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Pradeep K. Varshney	NAME OF COURSE COORDINATOR	Dr. Pradeep K. Varshney

Note: Attempt all questions. All are Compulsory.

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	PI
	1(A)	What is the Chemical formula of boric acid? Is it different from Borax? Justify your answer.	2	1	2	
	1(B)	Explain the concept of nuclear fusion and fission.	2	3	2	
	1(C)	Write the name given to bases that are highly soluble in water. Give an example.	2	1	1	
P	1(D)	How air pollution is destroying our health. Explain.	2	3	1	
AR	1(E)	What is potassium alum? Where it is used in homes?	2	1	1	
PART-A	1(F)	Why ferrous alloys are used extensively. Explain.	2	2	3	
	1(G)	Write a short note on incineration of hazardous waste?	2	2	3	
	1(H)	Why we call steel as "stainless"? Explain.	2	2	1	
	1(1)	"Determination of Biological Oxygen Demand (BOD) can help in suggesting the quality of a water body." Explain.	2	4	3	
	1(J)	How will you introduce metallurgy? Write two differences between Ores and Minerals.	2	4	1	
PΑ	Q2(A)	Do you feel that the knowledge of chemicals is important as a science student to protect environment. Discuss your answer with justifications.	.5	3	2	
PART-B	Q2(B)	Phosgene was used during the World War I as a poisonous gas. How it can be prepared in lab and industrial scale. How people can protect themselves and what they should do if they are exposed to phosgene.	5	3	4	

	As an environmentalist, what efforts would you make			1	
	about the production of industrial products and their				
Q3(A)	effects on environment and human health?	5	2	4	
	What is the future of nuclear energy? What kind of				
02(0)	measures you should take to manage nuclear disaster.	_	200		
Q3(B)		5	3	4	
	Explain the concept of "Greenhouse effect" and				
	Global warming" using diagram. What is the			8	
04(1)	importance of Ozone layer? What could be done to				
		10	3	3	
Q4(B)	Discuss methods of estimation of CO, NOx, SOx and				
	their control procedures.	10	1		
04(C)	If you are working in a textile Industry, what kind of	10	1	3	-
	effluents is released by the industry? How will you				
	manage industrial wastes/effluents as a Sr. Chemist?	10	4		
O5(A)	What is meant by Desalination of brackish water?	10	4	4	
	How it is carried out by Electro dialysis				
	the war is carried out by Electro dialysis.	10	4	3	
Q5(B)	What is the composition of photochemical smog?		•	1	
	What are the effects of photochemical smog and it can				
Sec.	be controlled.	10	2	2	
Q5(C)	As a chemist how can you treat effluent at primary	10	3	3	-
	secondary and tertiary level? Explain with the help of				
		10	1	1	
	Q4(A) Q4(B) Q4(C)	What is the future of nuclear energy? What kind of measures you should take to manage nuclear disaster. Explain the concept of "Greenhouse effect" and "Global warming" using diagram. What is the importance of Ozone layer? What could be done to prevent ozone layer depletion? Q4(A) Discuss methods of estimation of CO, NOx, SOx and their control procedures. Q4(C) If you are working in a textile Industry, what kind of effluents is released by the industry? How will you manage industrial wastes/effluents as a Sr. Chemist? Q5(A) What is meant by Desalination of brackish water? How it is carried out by Electro dialysis. Q5(B) What is the composition of photochemical smog? What are the effects of photochemical smog and it can be controlled. Q5(C) As a chemist how can you treat effluent at primary, secondary and tertiary level? Explain with the help of case study.	What is the future of nuclear energy? What kind of measures you should take to manage nuclear disaster. Explain the concept of "Greenhouse effect" and "Global warming" using diagram. What is the importance of Ozone layer? What could be done to prevent ozone layer depletion? Q4(A) Discuss methods of estimation of CO, NOx, SOx and their control procedures. 10 Q4(C) If you are working in a textile Industry, what kind of effluents is released by the industry? How will you manage industrial wastes/effluents as a Sr. Chemist? How it is carried out by Electro dialysis. Q5(A) What is the composition of photochemical smog? What are the effects of photochemical smog and it can be controlled. Q5(C) As a chemist how can you treat effluent at primary, secondary and tertiary level? Explain with the help of case study.	What is the future of nuclear energy? What kind of measures you should take to manage nuclear disaster. Explain the concept of "Greenhouse effect" and "Global warming" using diagram. What is the importance of Ozone layer? What could be done to prevent ozone layer depletion? O4(A) Discuss methods of estimation of CO, NOx, SOx and their control procedures. If you are working in a textile Industry, what kind of effluents is released by the industry? How will you manage industrial wastes/effluents as a Sr. Chemist? What is meant by Desalination of brackish water? How it is carried out by Electro dialysis. O5(B) What is the composition of photochemical smog? What are the effects of photochemical smog and it can be controlled. O5(C) As a chemist how can you treat effluent at primary, secondary and tertiary level? Explain with the help of case study.	What is the future of nuclear energy? What kind of measures you should take to manage nuclear disaster. Explain the concept of "Greenhouse effect" and "Global warming" using diagram. What is the importance of Ozone layer? What could be done to prevent ozone layer depletion? Q4(A) Discuss methods of estimation of CO, NOx, SOx and their control procedures. If you are working in a textile Industry, what kind of effluents is released by the industry? How will you manage industrial wastes/effluents as a Sr. Chemist? Q5(A) What is meant by Desalination of brackish water? How it is carried out by Electro dialysis. Q5(B) What is the composition of photochemical smog? What are the effects of photochemical smog and it can be controlled. Q5(C) As a chemist how can you treat effluent at primary, secondary and tertiary level? Explain with the help of case study.

DEPARTMENT OF SCIENCES

"End Term Examination, June- 2023"

SEMESTER	6TH	DATE OF EXAM	19.05.2023
SUBJECT NAME	INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS	SUBJECT CODE	СНН309ВТ
BRANCH	CHEMISTRY	SESSION	I
TIME	3hrs (01:00 - 04:00 PM)	MAX. MARKS	100
PROGRAM	B.Sc.(H)	CREDITS	4
NAME OF FACULTY	DR.PRITI GUPTA	NAME OF COURSE COORDINATOR	DR.PRITI GUPTA

Note: All Questions are compulsory.

		- Company.	S SAL COUNTY SOURCE		
	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
	1(A)	Below are some examples of errors produced during experimentation. Identify the type of error? i)Improper washing of a precipitate ii)use of improper calibrated weights iii)Occurrence of induced and side reactions iv)introduction of foreign material in a sample v)wrong selection of method			
PART-A	1(B)	Define Chemical and matrix interference? How are they can be corrected in Atomic Absorption determination?	3.5	CO2,CO1	BT2
-A	1(C)	How many fundamental vibrational frequencies would you expect to observe in the infrared absorption spectrum of CO ₂ ?	3		BT3
	1(D)	Discuss the relationship between Fluorescence and phosphorescence process. What are the factors affecting these processes?	5	CO1	BT2 BT3
	1(E)	How does photoacoustic spectroscopy works? Draw a neat Schematic diagram of Photoacoustic spectrometer.	6	CO2	BT4

م د د د			7	Ī	ľ
	Q2(A)	For selecting a carrier gas what considerations should be taken into account? Also describe two important applications of Gas chromatography in Qualitative analysis.	7	CO3	BT3
PART-B	2(B)	Justify how HPLC is more efficient to solve some of the shortcomings of standard /classical liquid chromatography? Also describe in brief the working and types of pumping systems used in HPLC.	8	CO3	BT1
	2 (C)	Give details about the following terms: 1) Number of Theoretical Plates (N) 2) Resolution 3) Retention Factor	9	CO3	BT4
	2(D)	With aspect of Gel electrophoresis technique explain how DNA fragments /RNA or proteins get separated based on their size and charge	8	CO3	BT3
2	2(E)	What are Supercritical Fluids, discuss the phase behavior of SCFs along with two properties: Density & Diffusivity.	8	CO3	BT2
	3(A)	Discuss about the following components of Mass spectrometer: 1) Ion Source 2) Vacuum system	7	CO4	BT2
F	3(B)	How Mass spectroscopy is useful in isotopic dilution method, Quantitative analysis of mixtures and impurity detection	8	CO4	BT3
PART-C	3(C)	Describe the principle of Fast Atom Bombardment (FAB). Give reason why these techniques are considered unique techniques for solid analysis.	8	CO4	BT2
	3(D)	Differentiate between chemical ionization and Electron Ionization techniques.	8	CO4	BT3
	3(E)	Write short notes on: 1)Time of Flight 2)Electric Quadrupole	9	CO4	BT4

DEPARTMENT OF SCIENCES

"End Term Examination, June-2023"

SEMESTER	II .	DATE OF EXAM	25.05.2023
SUBJECT NAME	Physical Chemistry-II	SUBJECT CODE	СНН506В
BRANCH	Chemistry	SESSION	T
DURATION	180 Minutes	MAX. MARKS	100
PROGRAM	M.Sc. Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Arpit Sand	NAME OF COURSE COORDINATOR	Dr. Arpit Sand

Note: Note: Part-A&B: All questions are compulsory.

	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
P	1	Calculate the number of ways of distributing distinguishable molecules a,b,c, between three energy levels so as to obtain the following set of occupation number N ₀ =1 N ₁ =1 N ₂ =1, that is each energy level is occupied by one molecules	6	CO1	BT3	1.3.1
PART-A	2	Write the sterling's approximation. Calculate the value of 9! and 49!.	4	CO1	BT3 BT4	1.3.1
-A	3	Write the Boltzmann distribution equation and the equation of molecular partition function. From these written equations shows that $E=nkT^2(\partial \ln q/\partial T)_v$	5	CO2	ВТЗ	1.3.2
	4	Derive the relationship chemical potential and partition function.	5	CO2	BT4	1.3.3
Ρ,	5	Explain Bravais lattice and deduce expression for Bragg equation	5	CO3	ВТ3	1.3.2
PART-B	6	Write a short note on Reciprocal lattice and draw the graph reciprocal lattice point	5	CO4	BT4	1.3.3
B	7	Differentiate X-ray and electron diffractions (up to 10)	10	CO4 CO3	BT4	1.3.1

	8	Discuss Patterson synthesis with the help of Potassium Nitrate crystal	f 10	CO4	DM2 DM4		
	9	Discuss crystal space with diagram	5	CO4	BT3 BT4 BT2 BT3	1.3.1	
	10	Define Space groups, Glide planes, screw axes and structure factor	5	CO5	BT4	1.3.3	
	11	Discuss the collision theory of bimolecular reactions	6	CO5	BT3 BT4	1.3.1	
	12	For the first order isomerization of an organic compound at 130°C. The activation energy is 108.4JK ⁻¹ mol ⁻¹ and the rate constant is 9.12×10 ⁻⁴ S ⁻¹ . Calculate the standard entropy of activation		CO4 CO5	BT3		
PART	13	Show that for a gaseous molecular reaction $A(g)+B(g) \longrightarrow (AB) \# \longrightarrow P$ Ea= $\Delta H^{\#}_{m}+2RT$ Where the subscript m stand for the molar.	5	CO5		1.3.1	
Ç,	14	What are the shortcomings of Hinshelwood Theory? How are they overcome by RRK theory of unimolecular reaction?	5	C05	BT4	1.3.2	
	15	In the temperature range of 250 to 450K,the pre exponential factor A, for the reaction $Cl(g)+H_2(g) \longrightarrow HCl(g)+H(g)$ is found to be equal to 1.20×10^{10} dm³ mol-1 S-1. If M (Cl) =35.453 g mol-1 M (H ₂) =35.453 g mol-1 d (Cl) =200 pm d(H ₂)=150 pm, determine the value of steric factor	10				
	16	Discuss statistical mechanical derivation of the rate constant of gaseous bimolecular reactions	10	CO5	BT3 BT4	1.3.2	

DEPARTMENT OF SCIENCES

"End Term Examination, June-2023"

SEMESTER	П	DATE OF EXAM	29.05.2023
SUBJECT Inorganic Chemistry II SUBJECT CO		SUBJECT CODE	СНН507В
BRANCH	M.Sc. Chemistry	SESSION	I
TIME	180 minutes	MAX. MARKS	100
PROGRAM	M.Sc. Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Roopa Rani	NAME OF COURSE COORDINATOR	Dr. Roopa Rani

Note: Attempt all questions

		198		1	
Q.NO. QUESTIONS		MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
Part A			*	2 2	
1	Explain the concept of lability and inertness as per VBT with suitable example.	5	CO1	3	
2	Explain the mechanism of substitution reaction of coordination complexes suggested by Eigen-Winkins.	5	CO1	4	
3	Justify the importance of nitrogen fixation in ecosystem with suitable examples.	4	CO1	5	
4	How does trans effect helpful in synthesizing few useful coordination complexes? Write atleast two examples and their synthesis.	6	CO2	4	
	PART B			*	
5	What do you mean by outer sphere electron transfer reactions? Explain its mechanism with a suitable example and draw their reaction coordinate curves.		CO3	5	
6	Write short notes on the following a) Nature of bridging ligand b) Two electron transfer reactions c) Chemical activation d) Internal electron transfer reaction	5 5 5 5	CO3	3	
7	Justify the statement "The mixed valance complexes can initiate internal electron transfer reactions"? Explain using suitable example.	10	CO3	6	

8	Explain the correlation between thermal and optical ETR.	10	CO4	5			
9	"Life time of excited state can decide the mode of occurrence of Electron Transfer Reaction". State the reason.	10	CO3	5			
10	Write the mechanism of excited state electron transfer reaction using [Ru(bpy) ₃] ²⁺ complex	10	CO4, CO5	4			
11	Define the role of spin-spin coupling in governing the intensity of transition in an ETR?	5	CO5	3			
12	Why Orbital coupling for ETR is important? Explain using an example.	5	CO5	4			
END							

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

"End Term Examination, June-2023"

SEMESTER	<u> </u>	DATE OF EXAM	31.05.2023
SUBJECT NAME	ORGANIC CHEMISTRY II	SUBJECT CODE	СНН508В
BRANCH	CHEMISTRY	SESSION	II
DURATION	3h	MAX. MARKS	100
PROGRAM	MSc	CREDITS	3
NAME OF FACULTY	Prof. Sangeeta Banga/ Dr. Shilpa Sharma	NAME OF COURSE COORDINATOR	Prof. Sangeeta Banga/ Dr. Shilpa Sharma

Note: Part-A: All questions are compulsory Part-B: All questions are compulsory

(Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	What is Chugaev reaction, Explain its mechanism and mention its synthetic importance.	3	CO1	BT2	
	1(B)	Both Hydroboration and Oxymercuration-demercuration reactions of alkene results in the formation of alcohol. How two reactions differ from each other, explain with the support of proper example.	3	CO1	BT2	
PART-A	1(C)	When the deuterium labeled compound given below is subjected to dehydrohalogenation using Sod. Ethoxide in ethanol, the only product is 3-methylcyclohexene. This product does not contain deuterium. Provide an explanation for this result. H. Br CH ₃ . D H	4	CO1	BT2	,

		2-bromobutane reacts with sodium			1	1
		hydroxide solution under suitable			и	
		conditions to give a mixture of but-1-ene and but-2-ene.				
		(i) Write the mechanism for the				
P/		formation of but-1-ene and but-2-ene				
PART -B		(ii)In fact, the reaction gives a mixture of two			-	
7		different but-2-enes. Explain, with the help of a Sawhorse diagram, how it is possible to have				
В	2(A)	two different but-2-enes.	4	CO2	BT2	
		Illustrate Mechanism for the Pyrolytic				
	2(B)	Elimination (with example)	3	CO2	BT2	
		When 3-iodo-3-ethylpentane is treated with	4			
		sodium methoxide in methanol, the major				
		organic product is an that is generated through an mechanism. Justify it by				
	2(C)	drawing mechanism	3	CO2	BT3	
		Show electron distribution in MO's of the	1000	002		
		following and explain its aromaticity on the basis of its frost circle:				
		(a) Cyclopentadienyl cation and anion				
		(b) Cycloheptatriene cation				
		(c) Cyclopropenyl cation and anion	2.5+2+2	at the state of th		
	3(A)	4	.5 =7	CO3	BT2	
P		Explain the basis on which the molecules given				
A		below are aromatic. Discuss whether the lone pair of electron participating in aromaticity or				
R		not, if not then why?				
T		N —				
-				4		
C		i s				
	2(D)	Pyrrole Pyridine Thiophene				
	3(B)	Discuss the Perturbation Theory Approach in	6	CO3	BT3	
		detail. Also, Explain the formation of Molecular				
		orbital of 1,3-butadiene from the interaction of			*	
	2(0)	the				
	3(C)	molecular orbitals of two ethylene molecules. (a) What is the physical significance of sigma	3+5=8	C03	BT3	
		and rho in Hammett equation for linear free				
		energy relationship?				
		(b) Why ortho isomers and aliphatic				
		compounds do not exhibit the straight-line			_	
		relationship?				
		(c) The nVe Velve for w. Chi.				
		(c) The pKa Value for m-Chlorobenzoic acid is 2.83 while that of benzoic acid is 3.61. Calculate				
		ρ -Cl. Substituent constant σ for Chloro at meta	3+2+3=			
-	3 (D)	position is = 0.37	8	CO3	BT3	

	3 (E)	Explain why a substituent such as nitro bonded to ortho and para position has a much greater effect on the acidity of phenol than a benzoic acid?	5	CO3	BT3	
	3 (F)	How many nodes are there in the molecular orbitals present at ψ 1, ψ 2, ψ 3*, & ψ 4*level of 1,3 butadiene and arrange these orbitals in the order of increasing energy.	6	C03	BT2	
P A	4(A)	Give one important method for the synthesis of Isoxazole and explain at which position does it undergo electrophilic substitution reaction.	6	CO4	BT2	
R T	4(B)	Explain the electrophilic substitution of Pyrazole. At which Carbon the electrophilic substitution is easily feasible and why? Write short note on synthesis and reactions of	5	CO4	BT3	
D D	4(C)	Benzoxazole. Also discuss why the nitration occurs here at 6th position and amination at 2nd position?	7	CO4	BT2	
	4(D)	Give reason for your answer on the basis of structure: (i) Imidazole is more basic than Pyrazole (ii) Pyridazine is more basic than Pyridine	3+3=6	CO4	BT3	
		Discuss the medicinal properties of the following compounds: (a) Pyridizine (b) Benzimidazone (c) Indole		001	DIS	
	4(E)	(d) Pyrimidine	8	CO4	BT2	
	4(F)	Explain the aromaticity of the following heterocyclic compounds: Pyrazole, Oxazole, Pyrazine, Benzithiazone,	8	CO4	BT3	

MANAV RACHNA UNIVERSITY DEPARTMENT OF SCIENCES (Program-Chemistry)

"End-Term Examination, June-2023 Set B"

SEMESTER	n	DATE OF EXAM	02.06.2023
SUBJECT NAME	Molecular Spectroscopy	SUBJECT CODE	СНН 509В
BRANCH	Chemistry	SESSION	2022-2023 (耳)
TIME	01:00PM -04:00PM	MAX. MARKS	100
PROGRAM	M.Sc Chemistry	CREDITS	4
NAME OF FACULTY	Dr. Jaya Tuteja	NAME OF COURSE COORDINATOR	Dr. Jaya Tuteja

Note: All Questions are compulsory

	Q.NO.	QUESTIONS		CO ADDRESSED	BLOOM'S LEVEL
Fee		Which solvents are generally used in UV-VIS spectroscopy and why?	3	CO1	B'1'2
Junyani Junyani Junyani	Q1(b)	Explain the electronic factor which influences the absorption frequency in IR spectroscopy?	3	CO1	ВТ3
ART-A	Q1(c)	Name the different types of lines present in Raman spectroscopy and explain the reason for observing these lines?	4	CO1	BT2
7	Q2(a)	What do you mean by shielding and deshielding of nucleus in ¹ H-NMR spectroscopy?	3	.CO2	вт3
ART-B	Q2(b)	What is the effect of hydrogen bonding and rapid exchange in ¹ H-NMR spectroscopy?	3	CO2	BT2
B	Q2(c)	Explain the term "splitting of signals" with suitable examples?	4	CO2	BT5
	Q3(a)	Why it is not possible to determine relative ratio of carbon atoms in a compound by integration of peak areas in ¹³ C-NMR as PMR?	3	CO3 .	втз
	Q3(b)	What are the advantages of gated-decoupling? Discuss in detail.	4	CO3	BT4
PART-C	Q3(c)	How many sets of non-equivalent carbons are there in: a. toluene b. 2-pentanone c. para-xylene	3	CO3	875
6	Q4(a)	What is DEPT in ¹³ C-NMR spectrum?	5	CO3	BT4
	Q4(b)	What is the difference between COSY and HETCOR techniques?	5	CO3	BT5
	Q5(a)	Distinguish among carbonyl isomers pertaining to the molecular formula C_4H_8O on the basis of CMR spectroscopy?	5	CO3	BT6
	Q5(b)	What are the four stages of a mass spectrometry?	5	CO3	БТ4

	Q6(a)	How Atmospheric Pressure Chemical Ionization (APCI)	Tr	T 004	
	4 -(-)	technique is different from Matrix Assisted Laser		CO4	BT3
		I Donate in the second of the			
		Desorption Ionization (MALDI) techniques in Mass Spectroscopy?			
	Q6(b) Explain the below terms in respect of Mass spectrometry			-	
	C (-)	(i) Fragmentation	5	CO4	BT5
		(ii)Mass analyzers			
	Q7	An organic compound gives the following spectral data:	15	201 000	
	ζ.	UV: λ _{max} 257 nm and 340 nm	15	CO1, CO2,	BT6
		IR: significant absorption bands at 3040, 2950, 1740, 1480,		CO3, CO4	
		1220, 750 and 700 cm ⁻¹			
		PMR: δ 1.96 (3H, s); 5.00 (2H, s); 7.22 (5H, s)			
		CMR (off-resonance decoupled): two singlets, one triplet,			
		one quartet, and three doublets. One of the singlets at δ 171			
		and other is at δ 136.			
		Mass: Prominent peaks at m/e 150 (M+), 108, 91, 79, 78			
		and 77.			
	Q8	Provide a structure of the compounds consistent with the	15	CO1, CO2,	BT6
		following spectra. Show your work and assign all relevant	13	CO1, CO2,	D10
		peaks in ¹ H-NMR spectra, 13C-NMR spectra. Interpret		CU3, CU4	
)		functionality from IR and show the fragmentation of Mass			
		wherever possible?			
	Q9	Provide a structure of the compounds with Molecular	10	CO1, CO2,	BT6
		formula of $C_{10}H_{12}O$ consistent with the following spectra.	10	CO1, CO2, CO3, CO4	DIO
		Show your work and assign all relevant reals in the MARIA		003, 004	
		Show your work and assign all relevant peaks in ¹ H-NMR spectra, ¹³ C-NMP spectra, ¹³			
		spectra, ¹³ C-NMR spectra. Interpret functionality from IR			-
		spectroscopy?			

Q 8 Spectral Data

¹H NMR

 $\delta = 2.10$. s. 3H

 ^{13}C NMR: δ 207, 141, 128, 126, 124, 45, 29, 27

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

"End Term Examination, June-2023"

SEMESTER	II	DATE OF EXAM	05.06.2023
SUBJECT NAME	COMPUTATIONAL CHEMISTRY	SUBJECT CODE	CHS620B
BRANCH	CHEMISTRY	SESSION	I.
DURATION	1.5h 01:00PM-02:30PM	MAX. MARKS	40
PROGRAM	MSc	CREDITS	2
NAME OF FACULTY	Dr. Shilpa Sharma	NAME OF COURSE COORDINATOR	Dr. Shilpa Sharma

Note: Part-A: All questions are compulsory Part-B: All questions are compulsory

Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PART-A	1(A)	What are different phases in drug discovery and drug development	3	CO1	BT2	
	1(B)	If I have a transgenic mouse whose tumour is growing fast. What type of drugs can be tested with that mouse.	1.5	CO1	BT2	
	1(C)	Explain the mechanism of action of anti- inflammatory drugs with suitable example.	3	CO1	BT2	
	1(D)	Give two examples of anti-protozoan's drug. How mosquito can spread the protozoans in the host body	2.5	CO1	BT2	ei ei
PART-B	2(A)	Explain the Abbreviation ADME. Drug metabolism take place in which organ?	2	CO2	BT2	
	2(B)	What is Lipinki's rule of five. What is it used for?	3	CO2	BT2	
	2(C)	Dissolution of a drug follows a first order process. Which is a first order relations (C0= initial drug concentration and C and t are the time and concentration at different times). If 50% drug dissolves in 12 mins how long will it take to dissolve 80% of the drug?	4	CO2	ВТЗ	
	2(D)	Does this molecule follow Opera – rule of 3. How many violations.	4	CO3	BT3	

2		H ₄ C OH	,				
P A	3(A)	How ab-initio method in quantum mechanics is different from semi-empirical method.	3	CO3	BT2		
R T	3(B)	Describe the role of QSAR using drug as example.	2	CO3	BT2		
- C	3(C)	Pharmacodynamics and pharmacokinetics play an important role in Drug discovery. How are they different and similar to each other.	4	C03	BT2		
P A R T	4(A)	In a protein sequence A and B, Sequence A has 320 amino acids and Sequence B has 450 amino acids. Among them 100 amino acids were similar and 23 were different by conservation substitution. Using Blast pair wise alignment, calculate identity (%) and similarity (%).	3	CO4	BT2		
- D	4(B)	Name different softwares used for analyzing the biological systems	2	CO4	BT1		
ט	4(C)	What are the applications of Computational Biology	3	CO4	BT2		
[]************************************							