

DEPARTMENT OF ME

"T3-Examination, MAY-2018"

Semester: 4th Subject: Thermal Engineering Branch: ME Course Type: Core Time: 3 Hours Program: B.Tech Date of Exam: 21.05.2018 Subject Code: MEH212 Session: II Course Nature: Hard Max.Marks: 80 Signature: HOD/Associate HOD:

Note:- All Questions are compulsory from Part A (2*10=20 Marks). Attempt **any two questions from Part B** (15 Marks each) and **any two questions from Part C** (15 Marks each).

PART A

- Q1. (a) Define Mach number. What is its significance?
 - (b) What is the relation between pressure and temperature of a compressible fluid for
 - (i) Adiabatic process (ii) Isothermal process
 - (c) What is critical pressure ratio for flow through a nozzle?
 - (d) What is the effect of friction in a flow through nozzle?
 - (e) Define velocity coefficient for flow through a nozzle.
 - (f) What are the applications of compressed air?
 - (g) Discuss the effects of clearance in a compressor.
 - (h) Define volumetric efficiency.
 - (i) What are the functions of a steam condenser?
 - (j) What are the disadvantages of a jet condenser?

PART B

Q2.	. (a) Define stagnation pressure. Obtain an expression for stagnation pressure in terms of approact		
	number and pressure.	8	
	(b) Obtain an expression for velocity of sound wave in a compressible fluid.	7	
Q3	(a) Derive an expression for mass rate of flow of compressible fluid through a nozzle fitted to a		
	What is the condition for maximum rate of flow?	8	
	(b) Find the Mach number when an aeroplane is flying at 1100 km/hour through still air having a pressure		
	of 7 N/cm ² and temperature -5°C. Wind velocity may be taken as zero. Take R=287.14 J/kgK	and $\gamma = 1.4$.	
		7	
Q4	(a) What do you mean by a supersaturated flow? Explain with the help of h-s diagram.	5	
-	(b) Define different types of steam nozzles and sketch their shapes.	5	
	(c) What is the effect of super saturation in nozzles.	5	

<u>PART C</u>

Q5	(a) Describe with a neat sketch the construction and working of a single-stage single-acting reciprocating air compressor. 8		
	(b) Derive an expression for work done/kg of air in a reciprocating compressor.	7	
Q6.	A single-stage single-acting compressor delivers 0.5 kg of air per minute at 5 bar. The temp pressure at the end of suction stroke are 20°C and 1 bar. The bore and stroke of the compres and 150mm respectively. The clearance is 4% of the swept volume. Assuming the index of and expansion to be 1.3, find (i) Volumetric efficiency of the compressor (ii) Power required if the mechanical efficiency is 85% (iii) Speed of the compressor (rpm).	ssor are 100mm	
Q7.	(a) Classify condensers. In what respect a jet condenser differs from a surface condenser?(b) Explain the effect of air leakage in a condenser. What are the sources of air leakage?	5 5	

(c) Explain the effect of an leakage in a condensel, what are the sources of air leakage? 5 (c) Explain the use of a cooling tower in a power plant. Describe any one type of cooling tower with a neat sketch. 5
