DEPARTMENT OF PHYSICS

"T3, Examination, May 2018"

Semester: II
Subject: Optics and Optical Devices
Branch: CSE/IT/ECE
Course Type: Core
Time: 3 Hours
Max.Marks: 80

Date of Exam: 24/05/2018
Subject Code: PHH 105 -T
Session: Morning
Course Nature: Hard
Program: B.Tech
Signature: HOD/Associate HOD

Note: All questions are compulsory from part A $(2 \times 10=20$ marks $)$. Attempt any two questions from Part B and two questions from Part C.

Part A

Q. 1 Compulsory question: $(10 \times 2=20)$
a) Define normalized frequency (V-Number) in single mode and multimode fiber.
b) Define specific rotation of the substance. Determine the value of specific rotation if plane polarization is rotated by 20° for a sugar solution of concentration $15 / 100 \mathrm{gm} / \mathrm{cc}$. The polarimeter tube length is 2 decimeter.
c) What are the differences between intermodal and intramodal dispersion.
d) Differentiate between spontaneous and stimulated emission.
e) Determine the numerical aperture of a step index fiber when the core refractive index $n_{1}=1.5$ and cladding refractive index $\mathrm{n}_{2}=1.48$.
f) In a ruby laser total number of Cr^{3+} ions are 2.8×10^{19}. If the LASER emits radiation of $\lambda \sim 7000 \mathrm{~A}^{\circ}$. Calculate the energy of LASER pulse.
g) The optical power after propagation through a fiber that is 500 m long is reduced to 25% of its original value. Calculate the fiber loss in $\mathrm{dB} / \mathrm{Km}$.
h) What do you mean by polarization? What are the differences between polarized and unpolarized light.
i) The coherence length of sodium light is $2.945 \times 10^{-2} \mathrm{~m}$ and its wavelength is $5890 \mathrm{~A}^{\circ}$. Calculate (i) the number of oscillations corresponding to coherence length and (ii) the coherence time.
j) A half wave plate is constructed for a wavelength of $6000 \mathrm{~A}^{\circ}$. For what wavelength does it work as a quarter wave plate?

Part B (Attempt any two questions) $(15 \times 2=30)$

Q. 2 What is a Nicol prism? Explain construction, working and limitations of Nicol prism. Also explain the phenomenon of double refraction in uniaxial crystal.
Q. 3 Define Einstein coefficient of absorption, spontaneous emission and induced emission. Obtain relationship between them. Write four application of LASER.
Q. 4 Discuss the principle of LASER. What are the main components of LASER? Explain the construction and working of $\mathrm{He}-\mathrm{Ne}$ laser.

Part C (Attempt any two questions) $(15 \times 2=30)$

Q. 5 What is an optical fiber? Discuss the principle of light transmission in an optical fiber. Define the term angle of acceptance and numerical aperture and derive a relation between them.
Q. 6 Explain different types of fibers? Write three advantages and disadvantages of optical fiber. Write four application of optical fiber. Find the diameter of the core for single mode transmission at $8500 \mathrm{~A}^{\circ}$ whose refractive indices for core and cladding are 1.48 and 1.47 respectively.
Q. 7 Draw the block diagram of optical fiber communication system and explain the function of each block. Also explain different types of losses in fibers.

