MANAV RACHNA UNIVERSITY DEPARTMENT OF CHEMISTRY

"T3, Examination, June 2018"

Sen	iest	er:	IV

Subject: Inorganic Chemistry-III

Branch: Chemistry Course Type: Core

"Time: 3 Hours Max.Marks: 80 Date of Exam: 17/05/2018 Subject Code: CHH217-T

Session: I

Course Nature: Hard

Signature: HOD/Associate HOD:

Note All Questions are compulsory from Part A (2X 10=20 Marks). Attempt any two questions from part B (30 Marks) Attempt any two questions from Part C (30 Marks).

- O1(a) Differentiate double salts and complex compounds by giving suitable example.
 - (b) Explain primary and secondary valences according to Werner's theory.
 - (c) Calculate EAN for [Pt(NH₃)₃Cl₃]⁺ and [Fe(CN)₆]⁻³.
 - (d) Draw geometrical isomers of [Co(en)₂Cl₂] and optical isomers of [CoCl₂ en (NH₃)₂]⁺
 - (e) Write a short note on spectro-chemical series.
 - (f) Calculate EAN for Mn₂(CO)₁₀
 - (g) Write names of following complexes (i) [Co(NO₂)₃(NH₃)₃] (ii) K₄[Fe(CN)₆] (iii) [PtCl₄(NH₃)₂] (iv) $K_4[Mo(CN)_8]$
 - (h) Write hybridization in [FeF₆]⁻³ and [Cr(NH₃)₆]⁺³
 - (i) Why are d-d electronic transitions forbidden.
 - (j) What do you mean by degeneracy. How it is destroyed in d orbital.

PART B

- Q.2. (a) What do you understand by Structural Isomerism. Explain with examples Ionization and (5) Marks) Linkage Isomerism.
- (b) Explain structure of $[Ni(CN)_4]^{-2}$ and $[Ni(Cl)_4]^{-2}$ on the basis of VBT.

(5 Marks)

- (c) What do you understand by CFSE. Calculate CFSE in octahedral complexes for d⁴ and d⁶ configurations.
- Q.3 (a) Describe and explain Jahn Taller distortion in octahedral, square planar and tetrahedral (4+4+4 Marks) complexes.
- (b) Write a short note on Chelates and Chelation.

(3 Marks)

- 4. (a) Explain magnetic behavior of coordination complexes with suitable examples. (3 Marks)
- (b) With the help of MOT explain structures of [Co(NH₃)₆]⁺³ and [CoF₆]⁻³ by making their molecular (6+6 Marks) orbital diagrams.

PART C

- Q 5 (a) What are mononuclear carbonyls. Explain structures of V(CO)₆ and Fe(CO)₅ on the basis of (2+4+4 Marks)
- (b) Explain the concept of back bonding in metal carbonyls with example.

(5 Marks)

Q 6 (a) What are polynuclear carbonyls. Explain structures of $Mn_2(CO)_{10}$ and Co_2CO_8 . (10 Marks) (b) Explain structure of $M_3(CO)_{12}$ type carbonyl with any one example. (5 Marks)

Q 7 (a) Explain the structure of M₄(CO)₁₂ type carbonyls with any one example. (5 Marks) (5 Marks)
(b) Calculate EAN of Fe₂(CO)₉, [V⁻(CO)₆] and Fe₃(CO)₁₂. (5 Marks)

(c) How IR spectroscopy is helpful in the structural elucidation of carbonyl complexes. (5 Marks)