

DEPARTMENT OF MATHEMATICS

"T3Examination, May2017-18"

Semester:4th

Subject:Group theory

Branch: Maths Course Type:Core

Time: 3 Hours Max.Marks: 80 Date of Exam: 17/05/2018 Subject Code:MAH227-T

Session: II

Course Nature: Hard

Program: B.Sc

milwasth Signature: HOD/Associate

Note: All questions are compulsory from part A (2*10 = 20 Marks). Attempt any two questions from Part B (15 Marks each). Attempt any two Questions from Part -C (15 Marks each).

<u>PART -A</u>

- Q.1 (a) Define Normal Sub group.
- (b) Is Z3⊕Z9 is isomorphic to Z27?
- (c) Define Automorphism of groups.
- (d) Define Conjugate elements in Group theory.
- (e) Show that the mapping $f: I \to I$ defined by f(x) = -x for all $x \in I$ is Automorphism of (I,t).
- (f) Show that if $0(Aut\ G) > I$ then o(G) > 2.
- (g) Prove that every sub group of an abelian group is always normal.
- (h) Show that every quotient group of an abelian group is abelian.
- (i) Prove that Normalizer of $a \in G$ is a sub group of G.
- (i) State Cauchy Theorem for finite Abelian groups.

PART - B

- Q.2 (a) If $f: G \to G'$ is a homomorphism, then prove that Kernel of f is a normal subgroup of G. (6)
- (b) Prove that every homomorphic image of a group. G is isomormorphic to some quotient group of G. (9)
- Q.3 (a) Prove that every finite group is isomorphic to a permutation group. (8)
- (b) If $f: G_1 \to G_2$ and f is homomorphism such that e_1 is Identity of G_1 and e_2 is Identity of G_2 . Then prove that $f(e_1) = e_2$.
- Q.4 (a) If M and N are two Normal subgroups of Gs.t.M N. Then Prove that $\frac{G}{N} \cong \frac{G/M}{N/M}$. (8)
 - (b) Prove that homomorphism $f: G \to G'$ is an Isomorphism iff $Ker\ f = \{e\}$ where e the Identity of G. (7)

PART -C

	Q.5 (a) If G is finite abelian group of order n and m is +ve integer such that $(m,n) = 1$. Then show that	
	$f: U \to G$ defined by $f(x) = x^m$ is an Automorphism.	(6)
	(b) Prove that the set Inn(G) of all inner Automorphism of a gp. G is a normal sub group of group Aut(C	3)
	as its automorphism.	(9)
0	Q.6 (a) Prove that an abelian group of order 10 is cyclic.	(7.5)
	(b) Prove that $Z_2 \oplus Z_2 \oplus Z_2$ has seven sub groups of order 2.	(7.5)
3	Q.7(a) Prove that a group G is internal direct product of two sub groups H ₁ and H ₂ iff H ₁ and H ₂ are normal	
3	subgroups of G.	(8)
	(b)Prove that the Identity mapping is only inner automorphism for an abelian group.	(7)