MANAV RACHNA
UNIVERSITY 7
(FORMERLY MANAV RACHNA COLLEGE OF ENGINEERING
NAAC ACCREDITED 'A' GRADE INSTITUTION)

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING "T3-Examination, May-2018"

Semester:2nd	Date of Exam:15/05/2018
Subject:Fundamentals of Electrical \& Electronics Engg.	Subject Code:ECH103-T Branch: ME
Session:I	
Course Type:Core	Course Nature:Hard
Time: 3 Hours	Program: B.Tech
Max.Marks: 80	Signature: HOD/Associate HOD:

PART-A
All questions are compulsory.
Q1(a). What do you mean by Zener effect?
(10*2=20)
(b). Draw the ideal and non-ideal I-V characteristic curve of a p-n junction diode.
(c). Derive the terms- Ripple factor and efficiency.
(d). Derive the relation between α and β of a BJT.
(e). List any four ideal characteristics of an op-amp.
(f). Find the expression for voltage gain of an inverting amplifier using op-amp.
(g). Convert: $(1456)_{16}=(?)_{8}$.
(h). Simplify the Boolean Function: $Y=\overline{(\bar{A} B \bar{C})}+\overline{(A \bar{B} C)}$
(i). Perform using 2's complement: $(11010010)_{2}-(01101001)_{2}$.
(j). Write the truth table for XOR and XNOR gates.

PART-B
 Attempt any two questions.

Q2(a). Draw and explain the I-V characteristic curve of a simple p-n junction diode.
(b). Differentiate between Zener and avalanche breakdown mechanism.
(c). Anac voltage of 230 V is applied to a half-wave rectifier through a transformer of turns ratio 10:1. Find (i) Output Voltage (ii) PIV (iii) Efficiency. Assuming diodes to be ideal.

Q3(a). A 10 V zener diode is used to regulate the voltage across a variable load resistor taking current from 10 mA to 85 mA . The input voltage varies between 13 V to 16 V . Calculate the value of series resistor if the minimum Zener current is 15 mA .
(b). Explain the input and output characteristics of a BJT operating in CE configuration.

Q4(a). The emitter current I_{E} in a transistor is 2 mA . If the leakage current $\mathrm{I}_{\text {Сво }}$ is $5 \mu \mathrm{~A}$ and $\alpha=0.985$, calculate I_{B} and I_{C}.
(b). With the help of circuit diagram explain the operation of an operational amplifier as-
(i) Integrator (ii) Summing Amplifier (iii) Difference Amplifier.

PART-C

Attempt any two questions.
Q5(a). Give the truth table of Full Adder circuit. Draw its circuit diagram using basic gates. Also, Implement using half-adder only.
(b). Simplify using K-Map: $F(A, B, C, D)=\Sigma m(0,2,4,6.8,10,12,14)$.

Q6(a). Simplify and draw the logic diagram for the given expression:

$$
\begin{equation*}
F=\overline{A B C}+\overline{A B} C+\bar{A} B \bar{C}+A \overline{B C}+A \bar{B} C \tag{10}
\end{equation*}
$$

(b). Give the IC numbers of the following gates:

NOT gate, NAND gate, NOR gate, XOR gate, OR gate.
Q7(a). The capacity of $2 \mathrm{~K} \times 16$ PROM is to be expanded to $16 \mathrm{~K} \times 16$. Find the number of PROM chips required and the number of address lines in the expanded memory.
(b). Compare the memory devices: RAM and ROM.

