

Declared as State Private University under section 2f of the UGC act, 1956 DEPARTMENT OF COMPUTER SCIENCE & TECHNOLOGY

"T3, Examination May 2018"

Semester: 2nd Subject: DATA STRUCTURES Branch: CSE Course Type: Core Time: 3 Hours Max.Marks: 80 Date of Exam:21/05/2018 Subject Code: CSH102-T Session: I Course Nature:Hard Program: B.Tech Signature: HOD/Associate HOD:

Part-A [10]-Each Question Carries two marks.

Q1.

- a) What is a stack? What is the end of the stack from which data can be stored and removed called?
- b) Track a stack matching parentheses for $\{(a + b) * (c + d)\}$.
- c) What does FIFO stand for? What data structure implements FIFO?
- d) What is printer spooling? Which data structure is used to implement the same?
- e) What type of relationship does a tree represent? How many leaves are there in a complete binary tree of n nodes?
- f) What are the two ways of representing a binary tree?
- g) What is the advantage of an AVL tree?
- h) What is the difference between a tree and a graph?
- i) What is the number of edges in a complete directed graph with N vertices? What is the number if the graph is undirected?
- j) Define adjacent node, path and complete graph?

Part B [3]Each Question Carries 15 Marks (Attempt Any Two)

Q2. (a) Write an algorithm that evaluates a prefix expression.	. (5)		
(b)Translate following infix expression A+(B*C-(D/E^F)*G)*H) in to postfix expression using			
stack.	(4)		
c) Evaluate $1 \ 2 \ 3 + *$, $1 \ 2 - 3 + 4 *$, and $1 \ 2 + 3 \ 4 + *$ using postfix evaluation function.	(6)		
Q3. (a) What is a Dequeue? What are the types of Dequeues?	(1+4)		
(b) What is a queue? Write an algorithm that remove an item from queue implemented as an array. (1+4)			
c) Explain how circular queue overcome the limitation of linear queue.	(5)		
Q4 (a) Write an algorithm for push and pop item from a stack implemented as an array.	(5)		
(b) Write an algorithm to add items in a circular queue implemented as an array.	(5)		
c) What is a priority queue? Write an algorithm to insert data in a priority queue?	(1+4)		
	. ,		

Part C [3]Each Question Carries 15 Marks (Attempt Any Two)

Q5 .(a)	Construct the binary tree with the following. Inorder:- DHBEAFCIG Postorder:- HDEBFIGCA	(5)	
(b)	What is a strictly binary tree? What is a complete binary tree? Is a complete binary tree a strictly		
	binary tree too ?	(2+2+1)	
c)	What is an AVL tree? What are the types of rotations?	(1+4)	
Q6. (a)	Define the properties of B-tree? How does a B-tree differ from a binary tree?	(2+1)	
(b)	What is threaded binary tree? Explain the procedure to remove all the null pointers of	f binary tree.(5)	
c)) What is binary search tree? Create a binary search tree for the numbers: 40,60,50,33,55,11. Fin		
	inorder, preorder and postorder traversal of created binary search tree.	(1+3+3)	
Q7 . (a)	Explain the difference between a directed and an undirected graph with example ?	(5)	
• • • •	Represent a directed graph with nodes A, B, C, and D and edges (A, B), (C, D), (C, D)	A), and (A,D)	
	as a set of linked lists.	(5)	
c)	What are the searching techniques for graph? Describe depth first search algorithm	(5)	