DEPARTMENT OF MATHEMATICS

"T3Examination, May 2017-18"

Semester:4 ${ }^{\text {th }}$
Subject:Advanced Analysis
Branch: Maths
Course Type:Core
Time: 3 Hours
Max.Marks: 80

Date of Exam:21/05/2018
Subject Code:MAH226-T
Session: II
Course Nature:Hard
Program: B.Sc
Signature: HOD/Associate HOD:

Note: All questions are compulsory from part A ($2 * 10=20$ Marks). Attempt any two questionsfrom Part B (15 Marks each). Attempt any two Questions from Part -C (15 Marks each).

PART -A

Q. 1 (a) Write the polar form of the complex number $-1-i$.
(b) Define Analytic Function.
(c) Write Cauchy Riemann Equations in polar form.
(d) Separate in to real and imaginary parts of the function $\sin (x+i y)$.
(e) Define improper integral. Give examples of different types of improper integrals.
(f) Examine the convergence of $\int_{0}^{\infty} \frac{d x}{1+x^{2}}$.
(g) State Dirichlet's Test for convergence of Improper Integrals.
(h) Discuss the convergence of $\int_{0}^{\infty} \sqrt{x} e^{-x} d x$.
(i) Define single valued and multiple valued function, with the help of suitable examples.
(j) State comparison tests for Improper Integrals.

PART-B

Q. 2 (a) Examine the convergence of the integral $\int_{0}^{\infty} \cos x^{2} d x$.
(b) Examine the convergence of the integral $\int_{a}^{b} \frac{d x}{(x-a) \sqrt{b-x}}$
Q. 3 (a)State and prove Abel's Test for convergence of improper integrals.
(b) Discuss the convergence of the Beta function.
Q. 4 (a) Using Dirichlet's test, show that $\int_{0}^{\infty} \frac{\sin x}{x} d x$ is convergent.
(b)Using the concept of term by term differentiation discuss the uniform convergence of $f_{n}(x)=n x e^{-n x^{2}}$

PART -C

Q. 5 (a) Show that the function

$$
f(z)=\left[\begin{array}{cc}
\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, & \text { when } \mathrm{z} \neq 0 \tag{8}\\
0, & \text { when } \mathrm{z}=0
\end{array}\right.
$$

Is continuous and C.R. equations are satisfied at the origin, but not analytic at origin.
(b) Prove that an analytic function with constant modulus is constant.
Q. 6 (a) If $u+v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$ and $f(z)=u+i v$ is an analytic function of z, Then find $\mathrm{f}(\mathrm{z})$.
(b) If $\omega=\varnothing+i \varphi$ represents the complex potential for an electric field and $\varphi=\left(x^{2}-y^{2}\right)+\frac{x}{x^{2}+y^{2}}$, Determine the function \emptyset.
Q.7(a) State and prove necessary and sufficient condition for a function $f(z)=u+i v$ to be analytic.
(b) Prove that real and imaginary parts of an analytic function are Harmonic functions.

