

DEPARTMENT OF MATHEMATICS

"T3 Examination, May 2017-18"

Semester:4 th	Date of Exam:15/05/2018	
Subject:ANTC	Subject Code:MAH309-T	
Branch: ME	Session: II	
Course Type:Core	Course Nature:Hard	
Time: 3 Hours	Program: B.Tech	
Max.Marks: 80	Signature: HOD/Associate HOD:	

Note: All questions are compulsory from part A (2*10 = 20 Marks). Attempt any two questions from Part B (15 Marks each). Attempt any two Questions from Part -C (15 Marks each).

PART -A

- Q.1 (a) Write steps for the solution of linear equation by Gauss Elimination method.
- (b) Name two methods which falls in the category of Iterative method. Solve 3x + y = 7, x 2y = 0 by any one of it.
- (c) What is principal of LU Decomposition method.
- (d) Jacobi's method is based on the fact that a matrix B is \dots then the eigen value of BAB^T are the.....same as those of matrix A.
- (e) State the difference between Jacobi's method and Given's Method.
- (f) Using Euler's method, find approximate value of y when x=0.4 for $\frac{dy}{dx} = 1 2xy$ given that y(0) = 0 and h = 0.2.
- (g) Formulate classical Runge- Kutta method of order four for the initial value problem

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

- (h) Write any two methods which falls in the category of multiple step for solving an initial value problem of ordinary differential equation.
- (i) Classify the partial differential equation: $y^2 \frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} + 4u = 0.$
- (j) The one-dimensional heat conduction equation is.....

PART - B

Q.2 (a) Using LU decomposition, solve the given equations-	(10)	
2x - 6y + 8z = 24, 5x + 4y - 3z = 2, 3x + y + 2z = 16		
(b) Solve the Gauss Elimination method to solve: (5)		
2x + 4y + z = 3, 3x + 2y - 2z = -2, x - y + z = 6		
Q.3 (a) Solve the following equations by Gauss –Seidal Method:	(10)	
10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14		
(b) Find the largest eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 & by \\ -1 & 4 & 10 \end{bmatrix}$		
Power method.	(5)	
Q.4Define tridiagonal matrix with example. Transform the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$ to tridiagonal form by		
Given's method.	(15)	
<u> PART -C</u>		
Q.5 (a) Solve $\frac{dy}{dy} = (x + y)$ having boundary condition $y(0) = 1$ by using Euler's method at x=1 (in five steps).		

Q.5 (a) Solve $\frac{dy}{dx} = (x + y)$ having boundary condition y(0) = 1 by using Euler's method at x=1 (in five steps). (10)

(b) Obtain Taylor series for y(x) where $\frac{dy}{dx} = x - y^2$, y(0) = 1. Use it to compute y(0.1) correct to four decimal places. (5)

Q.6 (a) Use Runge-Kutte Method of order 4 to compute y(0.2) & y(0.4) if $\frac{dy}{dx} = \frac{x^2 + y^2}{10}$, h = 0.1 and y(0) = 1 (10)

(b) Solve the Initial value problem $\frac{dy}{dx} = 1 + xy^2$, y(0) = 1 for x=0.4 by using Milne's method, when it is given that

X	0.1	0.2	0.3
У	1.105	1.223	1.355

(5)

Q.7. Solve the equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square with sides x = 0 = y, x = 3 = y with u=0 on the boundary and the mesh length =1. (15)