DEPARTMENT OF MATHEMATICS

"T3 Examination, May 2017-18"

Semester:4 ${ }^{\text {th }}$
Subject:ANTC
Branch: ME
Course Type:Core
Time: 3 Hours
Max.Marks: 80

Date of Exam:15/05/2018
Subject Code:MAH309-T
Session: II
Course Nature:Hard
Program: B.Tech
Signature: HOD/Associate HOD:

Note: All questions are compulsory from part A (2*10 = 20 Marks). Attempt any two questions from Part B (15 Marks each). Attempt any two Questions from Part -C (15 Marks each).

PART -A

Q. 1 (a) Write steps for the solution of linear equation by Gauss - Elimination method.
(b) Name two methods which falls in the category of Iterative method. Solve $3 x+y=7, x-2 y=0$ by any one of it.
(c) What is principal of LU Decomposition method.
(d) Jacobi's method is based on the fact that a matrix B is \qquad .then the eigen value of $\mathrm{BAB}^{\mathrm{T}}$ are the. \qquad same as those of matrix A.
(e) State the difference between Jacobi's method and Given's Method.
(f) Using Euler's method, find approximate value of y when $\mathrm{x}=0.4$ for $\frac{d y}{d x}=1-2 x y$ given that $\mathrm{y}(0)=0$ and $\mathrm{h}=0.2$.
(g) Formulate classical Runge- Kutta method of order four for the initial value problem

$$
\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

(h) Write any two methods which falls in the category of multiple step for solving an initial value problem of ordinary differential equation.
(i) Classify the partial differential equation: $y^{2} \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+4 u=0$.
(j) The one-dimensional heat conduction equation is

PART - B

Q. 2 (a) Using LU decomposition, solve the given equations-

$$
\begin{equation*}
2 x-6 y+8 z=24,5 x+4 y-3 z=2,3 x+y+2 z=16 \tag{10}
\end{equation*}
$$

(b) Solve the Gauss Elimination method to solve:
$2 x+4 y+z=3,3 x+2 y-2 z=-2, x-y+z=6$
Q. 3 (a) Solve the following equations by Gauss -Seidal Method:
$10 x+y+z=12,2 x+10 y+z=13,2 x+2 y+10 z=14$
(b) Find the largest eigen value and the corresponding eigen vector of the matrix $A=\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}$

Power method.
Q.4Define tridiagonal matrix with example. Transform the matrix $\begin{array}{lll} \\ A= & \begin{array}{ll}1 & 2 \\ 2 & 4 \\ 4 & 2\end{array} & 4\end{array}$ 2 tridiagonal form by

Given's method.

PART-C

Q. 5 (a) Solve $\frac{d y}{d x}=(x+y)$ having boundary condition $y(0)=1$ by using Euler's method at $\mathrm{x}=1$ (in five steps).
(b) Obtain Taylor series for $\mathrm{y}(\mathrm{x})$ where $\frac{d y}{d x}=x-y^{2}, y(0)=1$. Use it to compute $\mathrm{y}(0.1)$ correct to four decimal places.
Q. 6 (a) Use Runge-Kutte Method of order 4 to compute $y(0.2) \& y(0.4)$ if $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{10}, \mathrm{~h}=0.1$ and $y(0)=1$
(b) Solve the Initial value problem $\frac{d y}{d x}=1+x y^{2}, y(0)=1$ for $\mathrm{x}=0.4$ by using Milne's method, when it is given that

x	0.1	0.2	0.3
y	1.105	1.223	1.355

Q.7. Solve the equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $\mathrm{x}=0=\mathrm{y}, \mathrm{x}=3=\mathrm{y}$ with $\mathrm{u}=0$ on the boundary and the mesh length $=1$.

