

MANAV RACHNA UNIVERSITY

END SEMESTER EXAMINATION

SCHOOL OF ENGINEERING ECE

DECEMBER - 2023

 $(1st/3^{rd}/5^{th}/7^{th})$

INDEX to PYQs (Acc. To PDF)

S.NO.	Course Name	Branch	Sem	Page no (of PDF)
1	Probability and Statistics	B.Tech	1	4
2	Calculus and Linear Algebra	B.Tech	1	7
3	Quantum Mechanics for Engineers	B.Tech	1	9
4	Introduction to Information Security	B.Tech	1	10
5	Indian Constitution	B.Tech	1/3	12
6	ODSML	B.Tech	1	14
7	Environmental Science	B.Tech	1/3	16
8	Introduction to Robotics	B.Tech	1	17
9	Professional English	B.Tech	1	19
10	Basics of Electrical and Electronics Engineering	B.Tech	1	20
11	Programming for problem solving using C	B.Tech	1	23
12	Mathematics-I (Calculus and Linear Algebra)(ECE & VLSI)	B.Tech	1	26
13	Mathematics-I (Calculus and linear algebra) (SMA)	B.Tech	1	28
14	Engineering mechanics	B.Tech	1	30
15	Chemistry-I	B.Tech	1	33
16	Thermodynamics	B.Tech	1	35
17	Applied Psychology	B.Tech	3/5/7	37
18	Analog Electronics	B.Tech	3	40
19	Network theory	B.Tech	3	42
20	Signals and systems	B.Tech	3	45
21	System design using verilog	B.Tech	5	48
22	Digital system design	B.Tech	5	50
23	Micrcontrollers & interfacing	B.Tech	5	52
24	Introduction to wireless sensor network	B.Tech	7	54
25	VLSI testing	B.Tech	7	56
26	Simulation and synthesis with PLDs	M.Tech	1	57
27	Micrcontrollers and programmable digital signal processors	M.Tech	1	58
28	VLSI signal processing	M.Tech	1	60
29	CAD for Digital system	M.Tech	1	62
30	Research methodology & IPR	M.Tech	1	63
31	Nano materials & Nano Technology	M.Tech	3	65

MANAV RACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM/SESSION	11.12.2023(I)
COURSE NAME	Probability and Statistics	COURSE CODE	MAH124B-T
PROGRAM	B.Tech.	CREDITS	4
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. Ramapati Maurya	NAME OF COURSE COORDINATOR	Dr. Advin Masih

Note.	All que	stions are compulsory			8	andulk
	NO.	QUESTIONS	MA RK S	CO ADD RESS ED	BLÓ OM' S LEV EL	PI
2 570	1(A)	A couple has two children. Find the probability that both are boys, if it is known that at least one of the children is boy.	5	1.0	ВТ2	1.1.1
PART-A	1(B)	A bag contains 8 items of which 2 are defective. A man selects 3 items at random. Find the expected number of defective items he had drawn.	5	CO1	BT2	1.2.1
A	1(C)	Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the mean and variance of the number of Kings.	5			1.1.1
PART-B	2(A)	Consider a sample of size 2 drawn without replacement from an urn containing three ball numbered 1,2 and 3. Let X be the number on the first ball drawn and Y the larger of the two number drawn a) Find joint discrete density function of X and Y b) Find $\rho[X,Y]$	5	CO2	ВТ3	1.2.1
Г-В	2(B)	In a normal distribution 31% of the items are under 45 and 8% are over 64. Find mean and standard deviation of the distribution.	5		ВТ3	1.1.1
	2(C)	X and Y are two random variables having joint density function = $\frac{1}{27}(2x + y)$ where x and y can assume only integer value 0, 1 and 2. Find the conditional distribution of Y for X= x.	5		ВТ3	1.2.1

									1 1			
		Find the mis given that 19	sing fro 9.92 is	equency the avera	from the	following er of tabl	g data, i ets for b	t is being eing cured				
	3(A)	No. of Tablets	Pe	o of ersons ired	No. Tab	of lets	No o Pers	ons	9		ВТЗ	1.1.1
	3(A)	4-8	1		24-	28	9					1.1.2
		8-12	13		28-	32	17				l l	
		12-16	1.6	5	32-	36	6					
		16-20	14	1	36-	40	4					
		20-24	?							ř.		
		Find the Lov following da		artile (Q_1)) and upp	er quarti						
-		Overtime		umber of	f Ove	ertime	Nur	nber of		CO ₃		
PART-C	200	Hours	E	mployees	s Ho	urs	Emj	oloyees	9		BT4	1.2.1
7	3(B)	20-25		50	40-	45	15	0			DIT	1.1.2
0		25-30		70 -	45-	50	12	0				
		30-35		100	50-	55	70					
		35-40		180	55-	60	60					
	3(C)	Control of the contro				nd to be 4		5 90 80	8		BT4	1.1.1
		Calculate Spearman's rank correlation coefficients. From the given data obtain two regression equations using the										
		method of le			two regre	ossion eq	cittions				DES	1.2.1
D. R	3(D)		2	4	6	8	3	10	9		BT3	1,1.2
			5	7	9	8		11				
	4(A)	Fit a second x 1929 y 352	1930 356	1931	a to the formula 1932 193 358 360	3 1934	1935	1936 1937 360 359	12		BT4	1.1.1
PART-D		The demand	ay to d	ay as giv	en below	. Test the	e hypoth	esis that the		CO4		1.2.1
D	4(B)	Days No. of	Лоп. 24	Tue.	Wed.	Thu.	Fri. 126	Sat. 115	11		BT3	1.1.2
Hall !		ded										

		To te perfo both	rman	ce, a	simil	ar tes	t was	giver	1 to 1	stud	prove ents,	ed their	scores			
	1(0)	Bef	1	20	19	21	18	20	18	17	23	16	19	12	ВТ4	1.1.1
	4(C)	Aft er	24	19	21	18	20	22	20	20	23	20	17			1 . 1
0.00		Test	5% les	evel o erfori	f sign	ificar on the	nce if	the ext.	ktra cl	asses	were	usefi	ıl in			1 3 7 6 3 5 S

END

MANAY RACHNA UNIVERSITYA

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM/SESSION	11.12.2023(I)
COURSE NAME	Calculus and Linear Algebra	COURSE CODE	MAH101B-T
PROGRAM	B.Tech CSE, R2AI	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Kamlesh Kumar	NAME OF COURSE COORDINATOR	Dr. Ramapati Maurya
See: All question	s are compulsory.		Joan Lordnich

_		mestions are compaisory.		1	Kary	
Q	NO.	QUESTIONS	MARKS	CO ADDRES SED	BLOO M'S LEVEL	ΡI
	I(A)	Using Taylor's series, compute the value of sin 31 ⁰ to four decimal places.	5	COI	ВТ2	1.1.1 1.1.2
THAT	1(B)	Find the radius of curvature of the curve $y = e^x$ at the point where it crosses the y-axis.	5	- CO1	BT1	1.2.1
	1(C)	If $u = \frac{x^2y}{x+y}$, show that $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y \partial x} = \frac{\partial u}{\partial x}$.	. 5	COI	ВТ2	1.1.2
	2(A)	Evaluate $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x dy dx}{\sqrt{x^2+y^2}}$ by changing the order of integration.	5	CO2	BT2	1.1.1
AHT.II	2(B)	Find the volume of the solid generated by the revolution of the plane area bounded by $y^2 = 9x$ and $y = 3x$ about the x-axis.	5	CO2	ВТ3	1.1.1
i	2(C)	Evaluate $\iint \int (x + y + z) dx dy dz$ over the tetrahedron bounded by the planes $x = 0, y = 0, z = 0$ and $x + y + z = 1$.	.5	CO2	ВТ2	1.1.1
DAILY I	3(A)	Test whether the following matrix is invertible. If so, use Gauss-Jordan method, to find the inverse of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$. Also verify $AA^{-1} = I_3$.	9	CO3	ВТ3	1.1.1
	3(B)	Test for the consistency of the following equations and if possible find the solution: $x + y + z = 3$	14	CO3	BT4	1.2.1

		x + 2y + 3z = 4 $x + 4y + 9z = 6.$				
	3(C)	Find two non-singular matrix P and Q such that PAQ is in the normal form for the matrix $A = \begin{bmatrix} 2 & 1 & -3 & 6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$	12	CO3	BT4	1.1
	4(A)	Are the following vectors linearly dependent? If so, find a relation between them. $X_1 = (1, 2, 1), X_2 = (2, 1, 4), X_3 = (4, 5, 6).$	9	CO4	BT4	1.1.
PART-D	4(B)	Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$	14	CO4	ВТ3	1.2.
	4(C)	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \text{ and hence find } A^{-1}.$	12	CO4	ВТ3	1.1.

END

MANAY BACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES DEPARTMENT OF SCIECNES (Program-Physics) "End Semester Examination, Dec-2023"

SEMESTER		DATE OF EXAM/SESSION	14.12.2023 (I)
COURSE NAME	Quantum Mechanics for Engineers	COURSE CODE	PHH101B-T
PROGRAM	B.Tech. CSE A/B/C/R&AI	CREDITS	4
TIME DURATION	3hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Jaiparkash	NAME OF COURSE COORDINATOR	Dr. Jaiparkash

N	ote: .*11 q	uestions are compulsory.		SET -A	wer of 1	
10). No.	QUESTIONS	MAR KS	CO ADDRESS ED	BLOOM 'S LEVEL	PI
i	1(a	What voltage must be applied to an electron to produce electrons of wavelength o 0.5 Å?	2		BT3	
A CE	1(b)	Calculate the de-Broglie wavelength associated with electrons, which are accelerated by a voltage of 50kV.	3	COL	BT3	
PART	1(c	What is the minimum uncertainty in the energy state of an atom if an electron remains in this state for 10 ⁻⁸ sec?	3	CO1	BT3	
	1(d)	Derive an expression for time dependent Schrodinger wave equation.	7		BT2	
B	2	Find the probability of finding a particle in a region $0 \cdot 4L$ to 0.6L trapped in an infinite potential well of width L.	5	8	BT3	
PART-B	3	Solve Schrodinger equation for a particle confined to an infinite potential box of width 'L' in order to derive the expression for energy eigen values.	10	CO2	BT2	×
	4	Apply Schrödinger wave equation to find the eigen values and eigen functions for a particle trapped in three dimensional potential box.	10		BT3	
PART-C	5(4.)	Calculate the energy difference between the first two rotational energy levels of the $^{12}C^{16}O$ molecule if the intermolecular separation is 1.2 Å. Assume the molecule to be rigid rotator. (Given: $h = 6.63 \times 10^{-34}$ Js, $N_A = 6.02 \times 10^{23}$)	5	CO3	BT4	er.
	5(b)	Apply the Schrodinger equation for the H- atom and hence obtain the solution for θ and ϕ – dependent parts, respectively.	10+3		BT2	
	6	Show that $[L_x, L_y] = i\hbar L_z$.	7		BT3	
	7	Realize the basic logic classical gates (NAND, NOR and NOT logic gates) along with truth table using diode and transistor logics.	5+5 +5= 15		BT2	
PART-D	8	Write the notes on the following: (i) Entropy (ii) Entanglement (iii) Qubits (iv) $(1010)_{10}$ = () ₂	2.5× 4 = 10	CO4	BT2, BT3	
4	9	Discuss the following: (i) Identity gate, (ii) Identity gate, (iii) Phase shift gate, (iv) Hadamard gate (v) CNOT gate	2×5 = 10		BT2	×
		END				

			DEPARTMENT OF		R SCIENCE & TECHNOLO	GY			
-			EN	SEMES D TEDM EX	TER (I) AMINATION				
Info	rmatio	AME: Introduction To	COURSE CODE: CSH109B-T	CREDIT:	MAX. MARKS:100	TIME DURAT	ION:3 Hrs		F EXAM: 023
		B.Tech (SSTI) IAME: Ms. Sanjeeda Saif		SEMESTE	NAME OF COURSE COOF	RDINATO	R. Mr. Agh	a Imran	Husain
	NO.		QUESTI				CO ADDRES SED	S LEVEL	
	1(A)	What are the primary the help of example.	objectives of inf	ormation s	security? Explain with	2	CO1	L2	1.1,1
	1(B)	What is the difference		er and Def	ender? Support your	2	C03	L3	1.1.2
	1(C)	An organization want network and server s			2	CO1	L4	1.1.1	
	1(D)	What do you underst		2	CO3	L3	1.1.2		
P A R T	1(E	Explain the term cybe	er stalking with th	2	C03	L3	1.2.1		
A	1(F)	What do you understa with the help of a case	2	C02	L3	1.2.2			
	1(6	Explain the terms Ris life case scenarios.	2	CO1	L2	1.2.3			
	1(H	What are the different hackers? Give a real-li	2	CO3	L3	1.2.1			
	1(1)	What do you understa and counter?	and by Distributio	on Attack?	Why it is hard to track	2	CO3	L3	1.2.1
	1(1)	What do you understa of suitable examples.	and by insider att	acks? Expl	ain each with the help				1.2.2
P A R T		A fresh graduate who comes under which ty security?	just put his/her f pe of hacker? Wh				2.2.1		
	2(B)	Write a short on IT Ac	t 2000 with suita	ble case st	udy.	4	CO2	L3	2.1.2
	2(C)	What do you understa example.	nd by Ethical Had	king? Expl	ain with the help of	4	C02	L2	2.1.1

Marpet Kar

					_	
	6	What do you understand by the term CIA Triad? What are the different elements of information security? How Parkerian Hexad is better compared to CIA Triad. Explain with suitable examples.	10	CO1	L3 ··	2.1.3
		Briefly explain the different job roles available in the field of information security. Which job role will be suitable for you and why. Support your answer with the help of real-life case scenarios.	10	CO2	L4	2.2.2
		Explain different types of hackers in information security. Which type of hacker inspires you the most and why. Give suitable case studies or examples to support your answer.	10	CO3	L4	2.1.2
	3(D)	An organization wants to implement RBAC for restricting its network access. What are your view and benefits of the RBAC over other types of Access control?	10	CO4	L4	2.1.2
		What do you understand by the term VAPT? Explain various steps involved in VAPT with suitable examples.	10	CO1	L2	3.1.1
		Explain all the terms mentioned below with the help of case study: 1. Ethics 2. Morals 3. Values 4. Law	10	CO2	L3	3.2.1
P A R T D	4(C)	Scenario: You have recently been appointed as the Information Security Officer for a multinational technology corporation. The organization is undergoing a digital transformation, and there's a need to enhance awareness of information security jargon among employees. Develop a scenario-based plan to educate employees on key information security jargon, emphasizing their relevance in the context of the company's evolving digital landscape. Question: As the Information Security Officer, outline a scenario-based plan to educate employees on essential information security jargon. Choose three pieces of jargon relevant to the organization's digital transformation, and provide real-world scenarios to illustrate the practical application of each term. How would you ensure that employees not only understand these jargon but also incorporate them into their daily work practices to enhance information security?	10	C03	L5	3.2.2
		What are the difference between Mandatory Access Control and Discretionary Access Control? Give a suitable example to support your	10	CO4	L3	4.11
	4(D)	answer.	110	1004	LLS	4.11

MANAV RACHNA UNIVERSITY

SEMESTER	_I/III	DATE OF EXAM	15/12/2023 (11)		
COURSE NAME	Indian Constitution	COURSE CODE	LWS324		
PROGRAM .	B.Tech CSE/ECE/ME	CREDITS	3113324		
TIME DURATION	1:30 hours	MAX. MARKS	60		
FACULTY	Mr. Shubhank Sanjeev, Mr. Bharatendu Agarwal, Ms. Sampriti Phukan, Ms Sumbul Fatima, Ms Surbhi.	NAME OF COURSE COORDINATOR	Mr. Shubhank Sanjeev, Mr. Bharatendu Agarwal		

PRO TIM	RSE NAM GRAM E DURAT IE OF ULTY	B.Tech CSE/ECE/ME CREDITS TON 1:30 hours MAX. MAX Mr. Shubhank Sanjeev, Mr. Bharatendu Agarwal, Ms. Sampriti Phukan, Ms Sumbul	EXAM CODE RKS COURSE	LWS324	bhank Sanjo ratendu
Nate:	There ar	Fatima, Ms Surbhi. e four sections in the paper. Attempt all questions	<i>C</i> 1	Agarwal	nevi
	NO.	QUESTIONS	MAR KS	CO ADDRE SSED	BLOOM' S LEVEL
	Q1	Constitution of India borrows heavily from other constitutions of the world. Discuss.	5	CO1	BT2
PART-A	Q2(A)	Fundamental Duties are a constant reminder for us be model citizens. Do you agree? Also explain Fundamental Duties in Constitution of India.		CO2	BT 2
	Q2(B)	Position of President in Indian Constitution is special Discuss.	1. 5	CO 2	BT 3
	Q3	Explain the position and importance of preamble to the Constitution of India in your own words	5	CO 1	BT 2
WILLIAN.	Q4(A)	Elaborate upon the federal features of the Constitution of India	on 5	CO 3	BT 1
	Q4(B)	Analyse the Emergency provisions of the Indian Constitution.	5	CO 3	BT 3
	Q5	Amending the constitution of India is a complicated process. Give your opinion highlighting the limitation therein.	5 s	CO 4	BT 3
PART C	Q6	How are Directive Principles of State Policy in the Indian Constitution inter-connected with Fundament Rights? OR Explain the position and concept of Fundamental Rights in Indian Constitution?		CO 2	BT 3
	Q7	Explain 'Right to Life' as provided for in the Constitution of India.	1 5	CO 2	BT 3

	Q8	What is National Emergency? Explain its impact on Fundamental Rights.	5	CO 3	BT 2
IVd	Q9	What are Fundamental Duties? Are they enforceable in India?	5	CO 2	BT 1
T-D	Q10	What do you understand by 'Right to Equality' as provided for in the Constitution of India? OR Explain the position of Prime Minister under the Constitution of India.	5	CO 4	BT2

MANAY RACHNA UNIVERSITY?

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	1 st	DATE OF EXAM	16.12.2023 (I)
SUBJECT · NAME	ODSML	SUBJECT CODE	CSH107B-T
BRANCH	AIML, Robotics & AI	SESSION	I I I I I I I I I I I I I I I I I I I
TIME	3 hrs.	MAX. MARKS	100
PROGRAM	B.Tech.	CREDITS	4
NAME OF FACULTY	Dr. Ankita Gaur	NAME OF COURSE COORDINATOR	Dr. Ankita Gaur

Note: All questions are compulsory.

(Q.NO.				Q	UESTI	ons					MA RKS	CO ADD RES SED	BLOO M'S LEVEL
	- 161	Find the x 200-	median,	$Q_1, Q_3,$ 600-	D ₇ and 800 -	P ₈₅ fron	1200		ng da 400-	ta: 1600-	1800-			. 7
	Q.1(a)	400	600	800	1000	1200	1400	3 100	600	1800	2000	8	CO1	BT-3
	₹. - (4)	f 6	9	11	14	20	15	1	.0	8	7			
PART-A	Q.1(b)	Calculate to marks Mark s more than No. of Stude nts					ks for		tuder	ots in a		7.	CO1	BT-3
PART	Q.2(a)	A randon $ \begin{array}{c c} x & 0 \\ \hline p(x) & A \\ (i) \\ (ii) \end{array} $	1 3a Deter	2 3 5a 7a mine th	4 1 9a 1e value	5 (11 a)	6 13a	7 15a	8 17a	oution:		8	CO2	ВТ-3
·.в	Q.2(b)	Assume t What is t are selec (i)	he prob ted ranc	ability t lomly a	hat if si re calle	ix rando	mly se	elected				7	C02	BT-4

· 冰米米米米米

		(ii) At least three of them will be busy?	(1)		
	Q.3	Use the Gauss-Jordan method to find the inverse of the following matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}.$	11	CO3	BT-3
PART-C	Q.4	Find nonsingular matrices P and Q such that PAQ is in the normal form for the matrix $A = \begin{bmatrix} 3 & 1 & 2 & 1 \\ 1 & 4 & 6 & 1 \\ 2 & -3 & 1 & -2 \end{bmatrix}.$	12	C03	BT-3
	Q.5	State Cayley Hamilton theorem. Using Cayley Hamilton theorem find inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$	12	CO3	BT-3
	Q.6	Find the value of λ , the equations $x+y+z=6$ $x+2y+3z=10$ $x+2y+\lambda z=\mu$ have (i) no solution (ii) unique solution (iii) more than one solution?	11	CO3	BT-4
PART-I	Q.7	Diagonalize the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, and hence find A^4 .	12	CO4	BT-3
D	Q.8	Solve the system of equations $x+y+z=1\\3x+y-3z=5\\x-2y-5z=10$ by writing the coefficient matrix as a product of the lower and the upper triangular matrix.	12	CO4	BT-4
		**************************************	***		

MANAV RACHNA UNIVERSITY

SCHOOL OF SCIENCES DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	1/111	DATE OF EXAM	19.12.2023 (II)
COURSE NAME	ENVIRONMENTAL SCIENCE	COURSE CODE	CHH137/CHH107B
PROGRAM	B.TECH. CSE/BBA/B.Sc. B.ED./B.A. B.ED.	CREDITS	NIL/04
TIME DURATION	120 MINUTES	MAX. MARKS	50
NAME OF FACULTY	PROF. MEENA KAPAHI/DR. V. V. PATHAK/DR. PRITI GUPTA/DR. EKTA RAWAT/DR. HARSHA DEVNANI/Dr. VINOD KUMAR/ MS. ANJU SHARMA	NAME OF COURSE COORDINATOR	PROF. (DR.) MEENA KAPAHI ASDASAM

Note:	ate: All questions are compulsory. Some questions may offer internal choice.							
Q.NO		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL			
	1(A)	Can you analyze the advantages and disadvantages of exsitu conservation methods, providing examples of how these approaches contribute to the preservation of biodiversity in natural habitats.	5	CO3	BT3			
PART-A	1(B)	Explain the multidisciplinary nature of Environmental Studies. Provide at least two examples to explain the collaboration between different disciplines to address environmental challenges.	5	CO1	BT2			
	1(C)	Compare and contrast the levels of biodiversity, including genetic, species, and ecosystem diversity, highlighting their functional significance in ecological systems.	5	CO3	BT5			
	2(A)	Briefly outline the salient features of the water (prevention and control of pollution) Act 1974.	5	CO2	BT1			
	2(B)	Compare and contrast point and non-point sources of water pollution considering their characteristics and impacts. Discuss the challenges associated with pollution from agricultural runoff considering its impact.	3+2=5	CO4	BT3			
PARTI	2(C)	Apply your knowledge of pollution prevention by outlining the specific roles and responsibilities an individual can undertake to contribute to environmental well-being.	5	CO2	ВТ3			
=	3(A)	Write a short note on following population characteristics: (i) Doubling time (ii) HIV/AIDS	2.5+2.5= 5	CO4	BT1			
THE REAL PROPERTY.	3(B)	Discuss the variation of a country's population having urn shaped age pyramid. How does this demographic pattern impact factors such as workforce distribution and economic development?	2+3=5	CO4	BT4			
	3(C)	What is population explosion? How does it affect the overall development of a country?		CO4	BT2			
	3(D)	What are agents responsible for ozone depletion? Comment on the long-term consequences and propose mitigation strategies to address the challenges posed by ozone depletion.	2+3=5	CO2	BT2			

DEPARTMENT OF COMPUTER SCIENCE & TECHNOLOGY

"End Term Examination, Dec-2023"

SEMESTER	1 st	DATE OF EXAM	20.12.2023
SUBJECT NAME .	INTRODUCTION TO ROBOTICS	SUBJECT CODE	MEH108B-T
BRANCH	R&AI	SESSION	Morning
TIME	08.30AM - 11.30AM	MAX. MARKS	100
PROGRAM	B.Tech	CREDITS	3
NAME OF FACULTY	Dr. Ajit	NAME OF COURSE COORDINATOR	Dr. Ajit

Note: All questions are compulsory.

Q	.NO.	QUESTIONS	MARKS	CO ADDR ESSED	BLOOM'S LEVEL
P/	1(A)	Define degrees of freedom. Mention its importance in robotics.	5	CO1	BT1
PART-A	1(B)	Describe the Laws of robots.	5	CO1	BT2
>	1(C)	With the help of line diagram explain basic components of a robot system.	5	CO1	ВТ2
14	2(A)	Discuss the working principle of hydraulic actuators.	5	CO2	BT3
PART-B	2(B)	Discuss the Mechanical and hydraulic drives associated for transmission of power for robot.	5	CO2	BT3
-	2(C)	Elaborate role of stepper motor in robotics.	5	CO2	BT2
D/d	3(A)	Explain use of robot in assembly operation.	8	CO3	BT2
PART-C	3(B)	What are the types of End effectors?	9	CO3	BT1
0	3(C)	What do you mean by sensor and transducer explain with the example?	9	CO4	BT'2

		2	
	J		
	ū		

	3(D)	What is a proximity sensor, explain in details the	9		
		temperature and electric sensors.		CO4	BT2
2			9		
	4(A)	What are the material handling applications of robot?	*	CO3	BT1
	4(B)		8		
		Discuss are the future applications of Robot?		CO3	BT2
	4(C)	Justify the applications of robots in continuous arc	9		17
		welding and spray painting.		CO4	BT5
	4(D)		9		
	7	Analyze the robot economics and safety of robot.		CO4	BT4

DEPARTMENT OF EDUCATION AND HUMANITIES

End Term Examination -B. Tech Sem 1

21-12-2023 DATE OF EXAM **SEMESTER EDS 166** SUBJECT CODE **Professional English SUBJECT** (Set-A) NAME I SESSION Computer Science **BRANCH** 50 MAX. MARKS 2 Hrs **TIMING** 02 **CREDITS** B. Tech **PROGRAM** Dr. Akhilesh **COURSE** Dr. Chhavi NAME OF COORDINATOR Dwivedi Kulshrestha **FACULTY**

Note: All the questions are compulsory

Q.	NO.	QUESTIONS	MARKS	со	ВТ
PA	1	Differentiate between simple and Complex sentences. Explain them with the help of examples.	05	COI	ВТ2
PART-A	2	Explain the use of stress in communication.	05	CO2	ВТ2
	3 (a)	"Effective communication is obligatory for professional life," Justify this statement.	02	CO3	BT5
	3 (b)	"Decoding is key in the process of communication," Discuss.	02	CO3	вта
	3 (c)	What do you understand by expository writing? Exemplify it.	02	CO4	ВТ2
	3 (d)	How does presentation make communication more effective? Give reasons in support of your answer.	02	CO3	BT4
P/	3 (e)	Exemplify the difference between semi-colon and full stop.	02	CO4	BT2
PART- B	4	Barriers and filters are keys for effective communication. How do they make communication ineffective? Explain their types as well.	5+5	CO1	BT2
- B	5	What do you understand by Verbal Communication? Explain their		CO3	BT2
		Write an essay in 500 words on "Pollution and Urbanization." Discuss with contemporary examples. Or "Writing needs to make effective introduction and informative conclusion," justify the statement. Write an example of 200 words on	5+5	CO4	BT5
	6	the topic "Digital Literacy."			

17

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	22.12.2023 (I)
NAME .	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	COURSE CODE	ECH103B-T
PROGRAM	B.TECH ECE/CSTI/AIML/R&AI	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	LOKESH BHARDWAJ, BHANU PRATAP CHAUDHARY, K.DEEPA, PIYUSH CHARAN, SUNANDA MENDIRATTA	NAME OF COURSE COORDINATOR	LOKESH BHARDWAJ

All questions are compulsory.

		esitons are compulsory.				
•	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	PI
	1(A)	Which theorem is used to simplify complex linear circuits into an equivalent circuit with a single current source and a single resistor? Also write the statement.	2	CO1	L2	124
	1(B)	What is current division rule? Explain with the help of a circuit.	2			1.2.1
PART-A	1(C)	Convert the following voltage source into equivalent current source. $2V $		CO1	L2	1.2.1
1	1(D)	What is the significance of Volt equivalent of temperature V_{TH}	2	CO1	L2	1.2.1
	1(E)	Why the PN junction diode is considered as a non-linear device?	2	CO1	L2 L3	1.2.1

-		7/					
	1	4	For the following circuit, find the value of		ľ	ř	T
	EST:		current through 2 Ω resistance through	1		-	1
	1.5		Norton's theorem.				
	630			1			
		1(F)		+1			
-			+ 1Ω 1Ω		(4	1	
		***	$12\sqrt{\frac{1}{1-}}$ 2Ω	f			
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		₽		1
-	Division in the			_			
				-5	CO1	L3	1.3.1
			4				
= 0			•	· I			
-						1	
1		100000					
		FER				1	
100		1155					a (
		1000	WII D.				
		0041	Why Bridge type full wave rectifier is				
2		Q2(A)	preferred over center tap full wave rectifier.	2	CO2	L1	121
	T		Write the relationship between current		302	- LIT	1.3.1
	2		amplification factors of CE and CB				
	~	THE REAL PROPERTY.	transistors.				
	PART-B	Q2(B)		2	CO2		1.1.1,
	w		YATI		CO2	L2	1.3.1
-		02(0)	What is the basic difference between LED			L2	
-		_Q2(C)_	and photodiode?	2	CO2		1.2.1
						L2	1.2.1
			Voltage regulation is possible with Zener			122	
		Q2(D)	diode. Explain the reason.	2	CO2		121
			Draw a symbol of OD AMD	-	GOZ		1.2.1
100		Q4(E)	Draw a symbol of OP-AMP with proper				
		(T)Py	labeling.	2	CO2	L3	1.2.1
			Derive the equation of current in a purely				1.1.
		O4(E)	capacitive circuit. Draw the phasor diagram				1,
	-	Q4(F)	along with current and voltage waveforms.	5	CO2	L2	1.3.1
-			Determine the value of f				1.0.1
			Determine the value of forward voltage across				1.3.1,
-			a Silicon based PN-Junction diode if the				1.4.1,
		Q3(A)	forward current through the diode is 5 mA and the reverse saturation current is 2 A				2.3.1,
			the reverse saturation current is 2 μ A.	4	CO3	L4	3.1.1
2	_		Explain the working of a Full Wave bridge		4		
	V	2(D)	type rectifier in detail with suitable				1.3.1,
-	ART-C	3(B)	waveforms and diagram.	6	CO3	L2	2.3.1
-	-3		Explain the working of CE transistor		4		2.5.1
	0		amplifier in detail. Also, discuss the output				
			characteristics and explain the different				004
	214	Q3(C)	regions of operation.	6+5+4	COS	1.0	2.3.1,
-			Find the value of collector and base currents	01374	CO3	L2	3.2.1
			for the transistor circuit given below. Assume)d			
-			that the transistor is working in active region.				
		Q3(D)	β =90	4.0	.202		2.3.1,
			n 5.7	10	CO3	L1	2.3.2
3							
30			*****				
-			u u u u u u u u u				
-							X 3
-							
3							. *

-000	20		an .				
			10 V - T - 40 V	9	52 5		
	P/	Q4(A)	Explain the RC-Phase shift oscillator with the help of labeled diagram. List down the applications of Operational	7	CO4	L2	1.3.1, 1.4.1, 2.3.1, 3.1.1
	PART-D	Q4(B)	Amplifier. Why OP-AMP is called differential amplifier. Write the ideal characteristics of OP-AMP.	3+5	CO4	L1, L2	1.4.1
		Q4(C)	Derive the expression for the output voltage of a non-inverting OP-AMP. What is slew rate?	7+3	CO4	L2	2.3.1
-		Q4(D)	Explain the working of OP-AMP as subtractor with properly labeled diagram. Draw an OP-AMP circuit such that $V_0 = V_i$.	7+3	CO4	L2	1.4.1, 2.3.1, 2.3.2
L			****** END *	*****	******	NEW SERVICE OF THE	
				-			*
			****			¥	
				79			€3

MANAY RACHNA UNIVERSITY

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & TECHNOLOGY

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	26/12/2023 (I)
COURSE NAME	Programming for Problem Solving using C	COURSE CODE	CSH101B-T
PROGRAM	CSE/AIML/FSD/CSTI/R&AI/ECE	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Susmita Ray Dr. Manpreet Kaur Dr. Parneeta Dhaliwal Ms. Chandni Magoo Dr. Shalu Dr. Meena Chaudhary	NAME OF COURSE COORDINATOR	Dr. Meena Chaudhary

Note: All questions are Compulsory.

		Compuisory.				Service Co.
(2.NO.	QUESTIONS	MARKS	CO ADDRESSED	S LEVEL	PI
	1(A)	Can one type of data be converted into another? If Yes, explain with an example.				
	1(0)		3	CO1 '	BT1	1.4.1
	1(B)	Differentiate between Structure and Union.	3	CO3	BT2	1.3.1
	1(C)	State the use of break and continue statements along with an example.	3	CO1	BT2	
Part-A	1(D)	Define the term keyword. Find the output of the following code snippet: main () { int x, y; x = 5; y = x++/2; printf("%d", y); return 0; }	1+2	CO1	BT3	2.1.2
	1(E)	Differentiate between Dra and Dark'			D13	2.1.3
	1(E)	Differentiate between Pre and Post increment operator with suitable example.	3	CO2	BT2	1.4.1

		Why functions are made to a first					
	2(A	suitable example.	g 3			1.4	- - 1
100		Write a program to enter two numbers. Male		CO3	BT2		
100		a comparison between them with the	20 1				
	2(B	collational operator. If the first number is				1	1
<u> </u>		greater than the second, perform division	? -	2			3
Ė		operation otherwise multiplication operation	2	CO2	Demo		
Part-B	2(0)	Differentiate between selection and iteration			BT3	1.4	.1
	2(C)	statements in C along with their syntax and					
學的	-	examples.	3	CO2	BT2	1.4	4
E53	2(D)	Write a program in C to calculate power of a			B12	1.4.	1_
THE STATE OF		number inputted by the user.	3	200			
Die o	200			CO2	BT3	1.4.	1
	2(E)	What are Pointers? What are the benefits of				1.4.	1
		using pointers? Explain with an example.	1+2	CO3	BT2	1.4.	1
100	0.0	What is Recursion? WAP to find the sum of n				_	
U	Q3	numbers using recursion.	1+4	CO3	ртэ		.
Part-C		Write a C program to search a particular roll	-		BT3	1.4.	Ц
E		10. Ill an array. If that roll no exist in an			1		
1	Q4	array print "number is present" else print "number is absent".	10	CO3		1.4.1	
		a) Consider a scenario of convection of 5			BT3	1.4.1	
		a section of convocation of 5					\dashv
		60 54 83 75 66 Score					
		distribution of the degree they have to sit in					İ
		ascending order as the topper has to be				ŀ	
		specially nonoured with an award in the and					
		Apply Bubble sort to order the seguence for		-			
		the smooth conduction of the process with				1	
		stepwise execution.			S. C.		
		IN THE					
	Q5	b) Write a program to subtract two matrices	10+10	CO3	ВТЗ	212	
	_ \Q3	and get the result in third matrix.			Б13	2.1.3	1
		Explain a y 5 different operations performed		COA		 	-
	Q6	on a me will the nem of an example	5	CO4	5	1.4.1	
		Consider the following declaration for			BT2		
		Structure employee,			-		
8		struct employee {					
=		int emp_id;					
Part-D		char name[20];		12			
		float salary;	ĺ				
		}; Write the C program of the control of the contro					
		Write the C program for displaying above					
		information for four employees given by the user using the concept of array of structure.				1	
SER!	Q7	structure.	10	CO3	BT3	1	
						2.1.3	

Briefly explain the significance of dynamic memory allocation. Differentiate the following functions using examples 1)malloc() and calloc() 2)free() and realloc()	Q8	Why call by reference method is preferred over call by value method? Write a C program to swap contents of two variables using call by reference	2+8		70.000	
following functions using examples 1)malloc() and calloc() 2)free() and realloc()		Briefly explain the significance of dynamic	2+8	CO3	BT3	1.4.1
2)free() and realloc()		following functions using examples	s		l÷	
Q9 2+8 CO4 BT2 1.4.1			9		17.	
	Q9		2+8	CO4	BT2	1.4.1

MANAV BACHNA UNIVERSITYZI

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	Ist	DATE OF EXAM	11.12.2023 (I)
COURSE NAME	Mathematics-I(Calculus and Linear Algebra)	COURSE CODE	МАН103В
PROGRAM	B.Tech- ECE & VLSI	CREDITS	4
TIME DURATION	3 Hours	MAX. MARKS	100
NAME OF FACULTY	Dr. Y K Sharma	NAME OF COURSE COORDINATOR	Dr. Y K Sharma

Note: Attempt All Questions.

Q).NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
P/	1(A)	Find the radius of curvature at $(\frac{a}{4}, \frac{a}{4})$ of the curve $\sqrt{x} + \sqrt{y} = a$	5	CO1	BT1	1.1.1 1.2.1
PART-A	1(B)	Verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ for $u(x, y) = \sin^{-1}(\frac{y}{x})$	5	CO1	BT2	1.1.2 1.3.1
A	1(C)	Compute to three decimal places, the value of $\sqrt{26}$ by use of Taylor's series.	5	CO1	BT2	1.1.2 1.3.1 2.1.3
PART-B	1(D)	Find $div(3x^2\hat{\imath} + 5xy^2 + xyz^3)$ at the point (1,2,3)	5	CO2	BT1	1.1.2 1.3.1 2.1.3
T-B	1(E)	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, show that div $\hat{r} = 3$	5	CO2	BT3	1.1.2 1.3.1 2.1.3
	1(F)	Change the order of integration $\int_0^a \int_x^a \frac{x dx dy}{x^2 + y^2}$ and hence solve.	5	CO2	BT2	1.1.2 1.3.1 2.1.3
Ρ/	Q2	Examine the convergence/ divergence of the series $\sum_{n=1}^{\infty} \left[\sqrt{n^3 + 1} - \sqrt{n^3} \right]$	9	CO3	BT4	1.1.2 1.3.1 2.1.3
PART-C	Q3 ·	Examine the convergence/ divergence of the series $\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \cdots \dots \infty$	10	CO3	BT4	1.1.2 1.3.1 2.1.3
	Q4	Examine the convergence/ divergence of the series	8	CO3	BT4	1.1.2 1.3.1

		$\sum \left(\frac{n}{n+1}\right)^{n^2}$		s:		2.1.3
					=	
	Q5	Examine the convergence/ divergence of the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$, ∞	8	CO3	DT4	1.1.2
	Q6	Find the inverse of the matrix \[\begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \] By Gauss –Jordan method.	7	CO4	BT4 BT1	1.1.2 1.3.1 2.1.3
PA	Q7	With the help of matrix, solve the simultaneous equations $x + y + z = 3$, $x + 2y + 3z = 4$, $x + 4y + 9z = 6$.	8	C04	BT3	1.1.2 1.3.1 2.1.3
PART-D	Q8	Find the Eigen values and Eigen vectors of the matrix A, Where A $ \begin{pmatrix} 2 & 3 & -2 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} $	\$ 0	CO4	BT3	1.1.2 1.3.1 2.1.3
	Q9	Verify Cayley- Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$. Also find the invers of A.	10	CO4	BT3	1.1.2 1.3.1 2.1.3

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	Ist	DATE OF EXAM/SESSION	11.12.2023 (I)
COURSE NAME	Mathematics – I (CALCULUS & LINEAR ALGEBRA)	COURSE CODE	MAH102B- T
PROGRAM	B.TECH SMA	CREDITS	4
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. ADVIN MASIH	NAME OF COURSE COORDINATOR	Dr. Ankita Gaur

Note: All questions are compulsory.

Q.NO.		QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	PI
	Q.1(a)	If $x^x + y^y + z^z = c$, show that at $x = y = z$, $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$.	7	CO1	BT-3	1.1.
PART-A	Q.1(b)	If $u = \sin^{-1}\left(\frac{x+2y+3z}{\sqrt{x^8+y^8+z^8}}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} + 3\tan u = 0$.	8	CO1	ВТ-3	1.1.
T-A	Q.2(a)	Discuss the convergence of the series : $\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2^{n-1}+1} + \dots$	8	CO2	BT-2	1.1. 9.1.
	Q.2(b)	Test the convergence of the series $\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \cdots$	7 ,	CO2	BT-4	1.1.
PART-B	Q.3	Use the Gauss-Jordan method to find the inverse of the following matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}.$	8	CO3	BT-3	1.1.
	Q.4	Find nonsingular matrices P and Q such that PAQ is in the normal form for the matrix $A = \begin{bmatrix} 3 & 1 & 2 & 1 \\ 1 & 4 & 6 & 1 \\ 2 & -3 & 1 & -2 \end{bmatrix}$.	12	CO3	BT-3	1.1.

	Q.5	Find the value of λ , the equations $x + y + z = 6$ $x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) more than one solution?	15	 CO3	BT-4	1.1.1 9.1.1
	Q.6	Show that $div (grad r^n) = n (n + 1)r^{n-2}$.	12	CO4	BT-3	1.1.1 9.1.1
P,	Q.7 -	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	12	CO4	BT-3	1.1.1 9.1.1
PART-D	Q.8	How do you find a vector is irrotational? If $\vec{V} = (\sin y + z) \hat{\imath} + (x \cos y - z) \hat{\jmath} + (x - y) \hat{k}$ is irrotational.	6	CO4	BT-3	1.1.1 9.1.1
0	Q.9	Evaluate $\int_C \vec{f} \cdot d\vec{r}$ where $\vec{f} = (x^2 + y)\hat{\imath} + (x + y^2)\hat{\jmath}$ C is the arc of the parabola of $y = 2x^2$ from $(0,0)$ to $(1,2)$.	5	CO4	BT-3	1.1.1 9.1.1

END

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINEERING DEPARTMENT OF MECHANICAL

"End Semester Examination, Dec-2023"

SEMESTER	1 st	DATE OF EXAM/SESSION	14/12/2023(Morning)
COURSE · NAME	Engineering Mechanics	COURSE CODE	MEH101B
PROGRAM	в.тесн	CREDITS	4
TIME DURATION	3 HOURS	MAX. MARKS	100
NAME OF FACULTY	PRADEEP KR. MOURIA	NAME OF COURSE COORDINATOR	PRADEEP KR. MOURIA

Q.NO		QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL
		Q:1 (a) Explain and drive parallelogram law.	5		BT2
PART-A):1	Q:1 (b) A weight of 900 N is supported by two chains of length 4 m and 3 m as shown in fig. Determine the tension in each chain. According to the state of 900 N is supported by two chains of length 4 m and 3 m as shown in fig. Determine the tension in each chain. Chain No 1 Evgoon	10	CO1	BT4

0					
PART-B		Q:2 (a) A ball of weight 120N rests in a right-angled grooves, as shown in figure. The sides of the groove are inclined to an angle of 30° and 60° to the horizontal. If all the surface are smooth, then determine the reaction R_A and R_c at the point of contact.	10	CO2	BT4
		Q: 2 (b) Draw the free body diagram of a ball of weight W=500N also calculate tension in string AB and reaction at point C and D.	5	-	BT2
		Q:3 (a) Find out the moment of inertia of rectangular section about the C.G of the section.	15		BT2
PART-C	Q:3	Q:3 (b) Determine the moment of inertia of I section shown in figure.	20	CO3	BT4

			*		

PART-D	Q:4	Q:4(a) A truss AB of span 7.5 m is loaded as shown in fig. Find the reactions and forces in the member of the truss. 2.5 KN A A C C C B Q:4(b) Find the forces in the member AB, AC and BC of the truss shown in fig. 50 KN A Sm C Sm Sm	20	CO4	BT4

- MANAY RACHINA UNIVERSITY:

MANAV RACHNA UNIVERSITY SCHOOL OF SCIENCES

DEPARTMENT OF SCIENCES

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	18/12/2-27
COURSE NAME	CHEMISTRY-1	COURSE CODE	СНН144В-Т (Д)
PROGRAM	B.Tech ECE,VLSI & SMA	CREDITS	3
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	Dr. Vinod Kumar	NAME OF COURSE COORDINATOR	Dr. A. Jayamani

Note: Part A is compulsory. Part B- Questions will be of descriptive type or numerical.

().NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
4	1(A)	Deduce de-Broglie equation for dual nature of particle and state its importance.	5	C01	BT2	
PART-A	1(B)	Define acid and base on the basis of Arhenius theory and Lewis concept with examples.	5	CO2	BT2	
7	1(C)	Briefly explain Born-Openheimer approximation.	5	CO4	BT1	
	1(D)	What are three purposes of green chemistry?	5	CO3	BT1	
	Q2(A)	Discuss the screening constant and effective nuclear charge and its significance.	6	CO1	ВТ2	
PART-B	2(B)	What do you know about (i) Hund's rule (ii) Pauli's exclusion Principle	4	CO1	BT2	20
	2(C)	What are the two theories of corrosion? Explain with suitable examples. Also discuss the methods of its preventions.	6+4	CO2	BT3	
	Q3(A)	Discuss the methods of synthesis of Ibuprofen and Biodiesel	5+5=10	CO3	BT1	

ble District	1000				
		Explain with minimum two examples of		5.5	
		each		*	
		(i) enantiomers			
illed		(ii) distereomers		200	DEL4
100	3(B)		5+5	CO3	BT4
		Assign the R and S configurations of the following compounds	x	5.0	e e
		$CI \xrightarrow{CH_3} CH_3CI \xrightarrow{CH_3} CH_3 CH_3 \xrightarrow{CH_3} CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$			
	Q4(A)		2*5=10	CO3	BT3
	4(B)	Explain degrees of freedom of linear and non-linear molecule. Calculate the vibrational degrees of freedom for CO ₂ and H ₂ O molecule.	4+3+3	CO4	BT3
	Q5(A)	The pure rotational constant for CN molecule is 1.8 cm ⁻¹ . Calculate bond length of C-N bond. (molar masses are: C = 12 g/mol, N = 14 g/mol)	8	CO4	BT3
	5(B)	Explain selection rule for P,Q,R branches of IR spectra.	6	CO4	BT4
		What types of molecules exhibit rotational spectra? Out of H ₂ , N ₂ , HCl, CO ₂ , H ₂ O, CO and CH ₄ which will give			
	5(C)	rotational spectra.	6	CO4	BT4

END

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

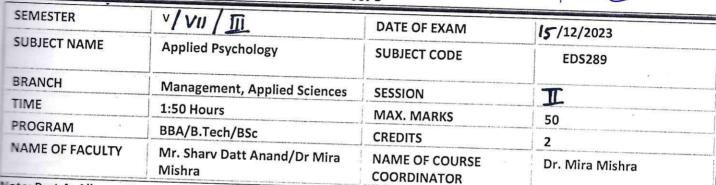
"End Semester Examination, Dec-2023"

SEMESTER	1st	DATE OF EXAM/SESSION	26.12.2023/MORNING
COURSE NAME -	Thermodynamics	COURSE CODE	MEH105B
PROGRAM	B.Tech ME-SMA	CREDITS	04
TIME DURATION	3 Hours	MAX. MARKS	100
NAME OF FACULTY	GIANENDER KAJAL	NAME OF COURSE COORDINATOR	GIANENDER KAJAL

Note: All questions are compulsory. Questions will be of the descriptive type or numerical.

Q.	NO.	QUESTIONS	MAR KS	CO ADDR ESSED	BLOO M'S LEVEL	PI
P	1(A)	A cylinder contains 5 m ³ of an ideal gas at a pressure of 1 bar. This gas is compressed in a reversible isothermal process till its pressure increases to 5 bar. Calculate the work in KJ required for the process is?	05	CO1	BT4	
PART (A)	1(B)	Define the following (a) Microscopic & Macroscopic View Points (b) Thermodynamic Equilibrium (c) Process and Cycle	05	CO1	BT1	. 40
	1(C)	Explain two statements of second law of thermodynamics. Establish its equivalence.	05	CO1	BT2	
P.	2(A)	An industrial heat pump operates between the temperature of 27°C and -13°C. The rate of heat addition and heat rejection are 750W and 1000W, respectively. Calculate the COP for the heat pump is?	05	CO2	BT4	
PART (B)	2(B)	Write short notes on following associated with S.F.E.E. (i) Nozzle (ii) Throttle Valve (iii) Turbine	05	CO2	BT2	
	2(C)	A carnot cycle is having an efficiency of 0.75. If the temperature of the high temperature reservoir is 727°C, Calculate the temperature of low temperature reservoir?	05	CO2	BT4	

≥	1			-		
PART (C)	3(A)	What do you mean by Ton of refrigeration? Derive expression for the refrigeration system, heat pump and heat engine with neat sketch.	07	CO3	ВТ3	
	3(B)	Explain the working of carnot cycle using P-V and T-S diagram. State why Carnot cycle can't be realized? Also explain the relation in between C_p , C_v , Adiabatic index and 'R'.	07	CO3	BT2	
	3(C)	Determine the work done and heat transfer for following process: a) C-V Process, b) C-P process, c) C-T process, d) Adiabatic process, e) Polytrophic process.	07	CO3	BT5	8
	3(D)	Determine the heat transfer for following process: a) C-V Process, b) C-P process, c) C-T process, d) Adiabatic process, e) Polytrophic process.	07	CO3	BT5	5
	3(E)	Define thermodynamic work. Write similarities & dissimilarities between Heat and Work	07	CO3	BT1	
PART (D)	4(A)	A heat reservoir at 700 K is brought into contact with the ambient at 200 K for a short time. During the period 7000 KJ of heat is lost by the heat reservoir. Calculate the total loss in availability due to this process is?	07	CO4	BT4	
	4(B)	How the First Law of Thermodynamics is applied to a process? Show how this formulation changes when it completes a thermodynamic cycle. Also explain the limitation of first law of thermodynamics.	07	CO4	BT2	
	4(C)	Develop the diesel cycles on P-V diagram and T-S diagram, and mark the various process and find out its efficiency.	07	CO4	вт6	
	4(D)	Define the following with examples. i) Open system ii) Closed system iii) Isolated system	07.	CO4	BT1	9
	4(E)	Define physical significance of entropy and explain Principle of increase of entropy.	07 ,	CO4	BT1	


***** END

MANAV RACHNA UNIVERSITY SCHOOL OF EDUCATION & HUMANITIES DEPARTMENT OF EDUCATION & HUMANITIES

"End Semester Examination, Dec-2023"

Set-B

Note: Part A: All questions are compulsory. Each question will be 2 Marks.

Part B: All questions are compulsory. Each question will be 2 Marks.

Part C: Questions will be of 5 marks. Internal choice will be there

Part D: Questions will be of 5 marks. Internal choice will be there.

C	Q.NO,	QUESTIONS	MAR KS	CO ADDRESSED	BLOOM'S LEVEL
	1(A)	Differentiate between aptitude and attitude with the help of suitable example.	2	CO3	BT2
P	1(B)	Discuss the role of social factors in the formation of personality.	. 2	CO4	BT2
PART-A	1(C)	Differentiate between introvert and extrovert traits of personality.	2	CO4	BT 2
	1(D)	Illustrate the difference between stereotype and prejudice with the support of suitable example.	2	CO1	BT2
	1(E)	"Your attitude, not your aptitude, will determine your altitude." Comment.	2	CO2	BT3
	2(A)	Describe the role of psychology across multi-disciplinary aspects.	2	CO3	BT2

	ALC: NO.	(B) Describe the term social conflict?	2	CO 3	BT2
FARI-B	2	Explain the application of psychology in various professional organization. 2 CO 3		BT2	
	2(D) Examine the significance of the effective "team management" in day-to-day life.	2	CO2	ВТ 4
	2 (E)	Describe the concept of Attitude.	2	CO2	BT2
PART-C	3(A	Analyze the concept of organizational psycholog and its significance in professional world. OR Explain Carl Jung's Theory of personality and its implications.	5	CO4	BT2
	3(B)	"Personality is conscious" comment in the light of characteristic features of personality. OR Explain the strategies that can be for stress management in organizations.	f .5	CO 5	ВТЗ
	3(C)	Discuss the significance of Cooperation and Competition in group. Or Describe any trait theory of Personality of your choice.	5	CO 3	BT2
PART-D	4(A)	Analyse the process of Group formation with the focus on the factors that affect effective group dynamics.	5	CO5	BT 4
-B	4(B)	"Family is an organization with its own unique problems of human behavior". Justify this statement.	5	CO 4	BT 5
	44.00	How do incorporate the concept of social conflicts in your organization? Explain the same with the help of an example.	5 C	06	BT4
		Or Analyze the situational factors that lead to the development of prejudice and discrimination			

evident in the personality of an individual.		СО	
		1	
	差数数		

		DEPART	MENT OF ELECTRONICS AND O ODD SEMESTER (DEC-2023	NGINEE	RING		ESSE COM
			END TERM EXAM					
(COURSE NAME: ANALOG ELECTRONICS COURSE CODE: ECH203B MAX. MARKS: 100					ME ION:3hrs	DATE OF EXAM:14.12.2	
PR	OGRAM	:(B. Tech.) - ELECT MUNICATION ENGG	RONICS & COMMUNICATION EL WITH SPECIALIZATION IN VLS	NGINEERING & ELEC I DESIGN AND VERI	CTRONI FICATIO	CS AND ON	SEMES	Farul
		FACULTY NAME:D	r,Shruti Vashist	NAME OF COUR	SE COOI	RDINATOR	:Dr.Shruti	Vashist
Q	.NO.		QUESTIONS		MARKS	CO ADDRESSE D	BLOOM'S LEVEL	PI
	Q1(A)	Differentiate betwe	een BJT and JFET		2	CO4	втз	3.3.1
	Q1(B)	Deduce the relatio	educe the relation between α and β					2.1.1
	Q1(C)	Construct circuit fo	2	CO1,CO2, CO3	вт3	3.2.2		
p	Q1(D)	Differentiate between Voltage and Power Amplifiers				CO1,CO2,	втз	3.2.2
A R T	Q1(F)	Explain the working of BJT as a switch				CO2,CO3	вт2	2.3.2
A	Q1(G)	circuit	1	20 V	3	CO4,CO5	BT4	3.1.1
PA	Q2(A)	Illustrate the wor explain the basic characteristics.	king principle of n Channel MC structure along with its circuit	OSFET. Sketch and symbol and ouput	7	CO3,CO5	BT4	5.3.1
R T · B	Q2(B)	and deduce the ex	I model for a low-frequency, small-signal transistor e expressions for current gain, voltage gain, input tput admittance, and power gain utilizing h-			CO3,CO5		7.1.1
	Q3(A)	Analyse the work	ing of Class A Direct coupled p ciency	ower Amplifier and	10	CO3,CO5	ВТ3	3.1.1
P A		A power transisto power dissipation deduce its efficien	or working in class A operation n of 15 watts. If the ac output p ncy	n has zero signal nower is 5 watt,	5	CO3,CO5	BT3	4.2.1
R T	Q4(A)	Design a Wien Bi frequency of osci	ridge oscillator using Op-Amp llation for the same	and deduce the	15	CO3,CO5	BT5	4.3.2
C		For a RC Phase sh R1=R2=R3=R=50 Oscillations	nift network,Given OK;C1=C2=C3=C=10 ⁻ pF; Calcula	ate the frequency o	f 5	co3,co!	BT2	7.2.2

Q5(B) With neat diagram Compute the gain for the inverting amplifier 4 CO2,CO5 BT4 3.4.		Analyze the concept of a multivibrator and explain any one briefly	8	CO2,CO5 B	T4	3.4.1
D Determine the working of Op-Amp as i.Logarithmic Amplifier Q5(C) Determine the working of Op-Amp as i.Logarithmic Amplifier 15 CO3,CO5 BT3 4.1 Q5(D) Descibe the key fetures of Op-Amp 8 CO2,CO3 BT2 3.1	P A Q5(B)	Compute the gain for the inverting amplifier	1		BT4	3.4.
Q5(C) ii.Differentiator in.Substitute 8 CO2,CO3 BT2 3	D	the working of Op-Amp as i.Logarithmic Amplifier	15		-	4.1
QS(D) Describe the Rey Feath State of the St		ii.Differentiator in. Subtract	8	CO2,CO3	BT2	3.1
	Q5(I	Descibe the key lettires of op an END				
		y x				\$\epsilon\$
						2
		8				
		a a		9		
			,			
		•				

MANAV RACHNA UNIVERSITY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

"End Semester Examination, Dec-2023"

CEMECTED	l m	DATE OF EXAM	19/12/2023 (11)	
SEMESTER COURSE	NETWORK THEORY	COURSE CODE	ECH202B-T	
NAME	B.TECH ECE ECE-VS	CREDITS	4	
PROGRAM	B.IECH E.	MAX. MARKS	100	
TIME DURATION	3 HRS		BHANU PRATAP	
NAME OF FACULTY	BHANU PRATAP CHAUDHARY	NAME OF COURSE COORDINATOR	CHAUDHARY	

Note: Part-A-All questions are compulsory.

Part-R-attempt any 8 auestions.

Q.M	NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	What is the condition for symmetry and reciprocity in a two-port network? a. The product of impedances should be equal b. The product of admittances should be equal c. The forward and reverse transmission parameters should be equal d. The open circuit impedance and short circuit admittance should be equal	2	CO1	L1	1.1.1, 1.1.2, 2.1.3, 2.4.1, 2.4.2
PART-A	1(B)	What are the parameters used to characterize a two-port network when the output terminals are open-circuited? a. Impedance parameters b. Admittance parameters c. Transmission parameters	2	CO1	L3	1.1.1, 1.1.2, 2.1.3, 2.4.1
	1(C)	d. Hybrid parameters In a circuit with multiple sources, which theorem can be used to find the total current through or voltage across a particular element? a. Compensation theorem b. Superposition theorem c. Reciprocity theorem d. Maximum power transfer theorem		CO1	L2	1.1.2 2.1.3 2.4.1 2.4.2
	1(D)	For an ac circuit, what is the condition for maximum power transfer? a. The load impedance should be equal to the source impedance	2	CO1	L2	1.1 2.1. 2.4. 2.4.

	1(E)	Which theorem is most suitable for finding the voltage across or current through a specific resistor in a complex circuit? a. Maximum power transfer theorem b. Reciprocity theorem c. Superposition theorem d. Compensation theorem	2	CO1	L2	1.1.1, 1.1.2, 1.3.1, 1.4.1
	1(F)	Derive Y parameters in terms of h parameters.	5	CO1	L2	1.1.1
	2(A)	What is the primary purpose of Laplace transform in circuit analysis? a. To convert time-domain signals to frequency-domain signals b. To convert frequency-domain signals to time-domain signals c. To measure circuit impedance d. To find the maximum power transfer	2	CO2	L1	1.1.1, 1.1.2, 1.3.1,
	2(B)	What is the time constant of an RC circuit? a. The time required for the voltage to reach 63.2% of its final value b. The time required for the voltage to reach 50% of its final value c. The reciprocal of the resistance d. The reciprocal of the capacitance	2	CO2	L2	1.1.1, 1.3.1, 1.4.1
	2(C)	Which matrix is used in graph theory to represent the connections between nodes and branches in a circuit? a. Incidence matrix b. Admittance matrix c. Impedance matrix d. Kirchhoff matrix	2	CO2	L2	1.1.2, 1.3.1, 1.4.1
PART-B	2(D)	What is the forced response of a circuit? a. The response due to initial conditions only b. The response due to external inputs or sources c. The response after the circuit reaches steady-state d. The response when all sources are turned off	2	CO2	L2	1.1.1, 1.1.2, 1.3.1, 1.4.1
	2(E)	What is the significance of duality in graph theory and circuit analysis? a. It allows the interchange of nodes and branches in a circuit b. It simplifies complex circuits into equivalent graphs c. It provides a way to analyze circuits with multiple sources d. It establishes a one-to-one correspondence between theorems	2	CO2	L3	1.1.1, 1.1.2, 1.3.1, 1.4.1,
	2(F)	For the given oriented graph shown in Figure, develop the tie-set schedule.	5	CO2	L2	1.1.1, 1.1.2,

		Design constant-k low-pass T section filter				1.2.1,
	Q3(A)	to be terminated in 600 having cut-off frequency of 3 kHz	5	CO3	L3	1.4.1, 2.1.1
	QU(1.)	Design constant-k low-pass π -section filter		2 **		1.2.1,
		to be terminated in 600 having cut-off				1.4.1,
	Q3(B)	frequency of 3 kHz	5	CO3	L3 L3	2.1.1
		Design a low pass filter for a cut-off			ПЭ	1.4.1,
	Q3(C)	frequency of 50 Hz. (π-section only)	5	CO3		2.1.1
PA		Design a high pass filter for a cut-off			L3	1.2.1, 1.4.1,
2	Q3(D)	frequency of 50 Hz. (T-section only)	5	CO3		2.1.1
PART-C		Design a T-section constant-K high-pass			-L3	E
		filter having cut-off frequency of 10 kHZ				60.000
		and design impedance Ro = 600 ohms. Find its characteristic impedance and constant at				1.2.1,
	Q3(E)	25 kHz.	7.5	CO3		1.4.1, 2.1.1
		A prototype high-pass filter has a cut-off			L3	
		frequency of 10 kHz and design impedance				
		of 600 ohm. Find the values of L and C. Also find attenuation in dB and phase shift				1.2.1, 1.4.1,
	Q3(F)	in degrees at a frequency of 8 kHz.	7.5	CO3		2.1.1
	4-(-)	Find the driving point impedance of the				1.2.1,
		network shown in figure				1.4.1,
		$+\frac{1}{8}$ $\pm \frac{1}{8}$ ± 10				
		1Ωξ [
	Q4(A)	Determine whether the function	5	CO4	L3	2.1.1,
		$Z(S) = \frac{(s+2)(s+4)}{(s+1)(s+3)}$ is positive real or not.	vap.			3,1,1
	Q4(B)	$\frac{Z(3) - \frac{1}{(s+1)(s+3)}}{(s+1)(s+3)}$ is positive real of flot.	5	CO4	L3	2.1.1,
PART		Check whether the given polynomial $P(S) =$				3,1,1
R	Q4(C)	$s^4 + s^3 + 2s^2 + 4s + 1$ is Hurwitz or not.	5	CO4	L4	
G		Find the range of values of a so that				1.2.1,1
	Q4(D)	$P(S) = 2s^4 + s^3 + as^2 + s + 2$ is Hurwitz. An impedance function is given by	5	CO4	L4	
						1.2.1,
		$Z(S) = \frac{(s+1)(s+4)}{s(s+2)(s+5)}$				1.4.1,
	0.4(77)	Find the RC representation of Foster-II and				2.1.1,
	Q4(E)	Cauer-II forms. Synthesize the following L-C driving point	7.5	CO4	L3	3,1,1
The	No. of Lot	impedance using Cauer forms.				1.2.1, 1.4.1,
		$Z(S) = \frac{s(s^2 + 4)(s^2 + 16)}{(s^2 + 9)(s^2 + 25)}$		5		2.1.1,
PERM	Q4(F)	$(s^2+9)(s^2+25)$	7.5	CO4	L3	3,1,1
1 10 15		*******	aleste de de de de	******	alealealeale	

END

MANAV RACHNA UNIVERSITY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

"End Semester Examination, Dec-2023"

SEMESTER	III	DATE OF EXAM	21.12.2023 (Ⅱ)
COURSE NAME	SIGNALS AND SYSTEMS	COURSE CODE	ECH204B
PROGRAM	B.TECH ECE	CREDITS	4
TIME DURATION	3 hrs	MAX. MARKS	100
NAME OF FACULTY	LOKESH BHARDWAJ	NAME OF COURSE COORDINATOR	LOKESH BHARDWAJ

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Draw the following signal: $x(t) = 3\delta(t-2) - 2\delta(t-4)$	2	CO1	L1	1.2.1
	1(B)	Formulate and write the relationship between $\delta(t)$ and $u(t)$	2	CO1	L2	1.2.1
P/	1(C)	With respect to $h(t)$, comment on the stability of an LTI system.	2	CO1	L3	1.2.1
PART-A	1(D)	What are 1-D and multi-dimensional signals? Give examples.	2	CO1	L2	1.2.1
Α	1(E)	What are causal and non-causal systems? Given one example of each.	2	CO1	L2	1.3.1
	1(F)	Determine whether the following signal is Energy or Power signal. Hence, evaluate the same. $x[n] = e^{j5n}u[n]$	5	CO1	L4	1.1.
P,	2(A)	Draw the waveform of $3rect(t/4T)$	2	CO2	L1	1.3.1
PART-B	2(B)	What is the Fourier Transform of Signum function?	2	CO2	L2	1.1.1, 1.3.1
8	2(C)	If $G(f)$ is the Fourier transform of $g(t)$, what is the Fourier Transform of $g(kt)$.	2	CO2	L2	1.2.1

2(D) 2(E) 2(F)	What is the condition for a system to be Anti-causal and stable in Z-Transform. If $X(Z) = 1/(1-2Z^{-1})$ with ROC: $Z > 2$, What is $x[n]$.	2	CO2	L2	1.2.1
		2	22		-
2(F)		1	CO2	L2	1.2.1
	Find even and odd parts of the following signal. $g(t) = 4rect[t/T - 1/6]$	5 *	CO2	L3	1.1. 1, 1.3.1 1.3.1,
Q3(A)	Identify whether the following input-output relationship is causal or not. $y[n] = \sin[n+3].x[n-2]$	6	CO2	L3	1.4.1, 2.3.1,3 .1.1
Q3(B	Transform the following signal: $x\left(\frac{2}{3}t+1\right)$ $x(t)$ $0 2 4$	Ġ	CO3	L3	1.3.1, 2.3.1
Q3(C	For an impulse train, calculate the complex coefficient of complex exponential Fourier Series and Hence determine the Fourier Transform and draw the spectrum.	6+5	CO3	L3	2.3.1, 3.2.1
Q3(D	signal given below:	6	CO3	L4	2.3.1, 2.3.2
024	Using the following signal given below, evaluate the Fourier Transform of Sgn(t)	6	CO3	L4	2.3.1, 2.3.2
	Q3(B) Q3(C)	Transform the following signal: $x\left(\frac{2}{3}t+1\right)$ $x(t)$ $x(t)$ For an impulse train, calculate the complex coefficient of complex exponential Fourier Series and Hence determine the Fourier Transform and draw the spectrum. Determine the Fourier Transform of the signal given below: $y(t)$	Transform the following signal: $x\left(\frac{2}{3}t+1\right)$ Q3(B O 2 For an impulse train, calculate the complex coefficient of complex exponential Fourier Series and Hence determine the Fourier Transform and draw the spectrum. Determine the Fourier Transform of the signal given below: Q3(D Using the following signal given below, evaluate the Fourier Transform of Sgn(t) 6 Q3(D O O O O O O O O O O O O O	Transform the following signal: $x\left(\frac{2}{3}t+1\right)$ Q3(B) For an impulse train, calculate the complex coefficient of complex exponential Fourier Series and Hence determine the Fourier Transform and draw the spectrum. Determine the Fourier Transform of the signal given below: Q3(D) Using the following signal given below, evaluate the Fourier Transform of Sgn(t) C03 C03 C03	Transform the following signal: $x\left(\frac{2}{3}t+1\right)$ Transform the following signal: $x\left(\frac{2}{3}t+1\right)$ For an impulse train, calculate the complex coefficient of complex exponential Fourier Series and Hence determine the Fourier Transform and draw the spectrum. Determine the Fourier Transform of the signal given below: O3(D) Using the following signal given below, evaluate the Fourier Transform of Sgn(t) O3(D) O3(D) O3(D) O3(D) O3(D) O4(D) O5(D) O6(D) O7(D) O7(

	Q4(A	Evaluate the area under the curve given below: $\int_{-\infty}^{+\infty} 3Sinc(fT) dt$	7	CO4	L4	1.4.1
PAF	Q4(B*	Obtain the Z-Transform for the following signals given below: (a). $x[n] = \cos[w_0 n] u[n]$ (b). $x[n] = 1; 0 \le n \le N-1$ (c). $x[n] = [1, 2, 3, 2, 4]$ \uparrow Hence find the ROC of all parts.	*			1.4.1, 2.3.1
PART-D)	(a). For the following signal $x[n] = \alpha^n u[n]$	3+3+2	CO4	L3	
D	Q4(C	and impulse response $h[n] = \beta^n u[n]$, evaluate $y[n] = x[n] * h[n]$. Given $Y[Z] = X[Z]$. $H[Z]$ (b). Find $X[Z]$ for $x[n] = [sinw_0 n]u[n]$	7+3	CO4	L4	1.4.1, 2.3.1, 2.3.2
		Evaluate the sequence $x[n]$ for the Z- Transform: (a). $X(Z) = \log(1 + aZ^{-1})$, $ Z > a $	7.10			
	Q4(D	(b). $X(Z) = \frac{1}{1 + \frac{1}{4}Z^{-1}}$, $ Z < \frac{1}{4} $	8+2	CO4	L4	1.4.1, 2.3.1, 2.3.2
		****** END	*****	*****	****	

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

"End Semester Examination, Dec-2023"

SEMESTER	V	DATE OF EXAM	8/12/2023 (I)
COURSE NAME	SYSTEM DESIGN USING VERILOG	COURSE CODE	ЕСН323В-Т
PROGRAM	B.TECH ECE VLSI	CREDITS	3
TIME DURATION	3HRS ECELVLS	MAX. MARKS	100
NAME OF FACULTY	NEHA SHARMA(TRUECHIP)	NAME OF COURSE COORDINATOR	NEHA SHARMA(TRUECHIP)

Note: All questions are compulsory.

().NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
	1(A)	Explain the purpose of a testbench in Verilog?	2	CO1	L1	1.1.1, 1.2.1
P/	1(B)	Explain the difference between blocking and non-blocking assignments in Verilog.	2	CO1	L2	1.1.1, 1.2.1
PART-A	1(C)	Identify the need of sensitivity list in always block?	2	CO1	L3	1.1.1, 1.2.1
7.	1(D)	Explain the different types of Verilog delays?	2	CO1	L2	1.1.1, 1.2.1
	1(E)	Describe the difference between combinational and sequential logic in Verilog.	2	CO1	L3	1.2.1, 1.3.1
	1(F)	Define half adder	5	CO1	L2	1.1. 1, 1.3.1
	2(A)	How does parameterization work in Verilog modules?	2	CO2	L1	1.3.1
-	2(B)	List the advantages of using always @(posedge clk) compared to always @(*) in Verilog?	2	CO2	L2	1.1.1, 1.3.1
PART-B	2(C)	Explain the difference between a task and a function in Verilog.	2	CO2	L2	1.2.1, 1.3.1
T-B	2(D)	Explain is the significance of the wire and reg keywords in Verilog?	2	CO2	L2	1.2.1
	2(E)	Explain hierarchical design?	2	CO2	L2	1.2.1
	2(F)	Write Verilog code for a 2:1 multiplexer	5	CO2	L3	1.1.1, 1.3.1
	Q3(A)	Define multiplexer?	5	CO3	L2	1.3.1,1.4.1, 2.3.1,3.1.1
P	Q3(B)	Write Verilog code for a 4:1 multiplexer.	5	CO3	L3	1.3.1, 2.3.1
AR	Q3(C)	Explain decoder ?	5	CO3	L3	2.3.1, 3.2.1
PART-C	Q3(D)	Write the code for 2:4 decoder.	5	CO3	L3	2.3.1, 2.3.2
()	Q3(E)	Explain encoder ?	5	CO3	L2	1.4.1

65						CO3		141021
			Q3(F)	Implement a 4-to-2 encoder in Verilog.	5	CO3	L4	1.4.1,2.3.1 1.4.1, 2.3.1,
	0			Explain the working of D Flip Flop?	5	CO3	L2	2.3.2
	0		Q3(G)			CO4	L4	1.4.1, 2.3.1, 2.3.2
	_		Q4(A)	Create a D flip-flop using Verilog.	5	CO4	L3	1.4.1, 2.3.1
			Q4(B)	Explain module ?	5	CO4	L2	1.4.1, 2.3.1
	7	P	Q4(C)	Explain Instance? Explain the purpose of a simulation in Verilog,				1.4.1,2.3.1,
	-	AF	Q4(D)	and how is it conducted?		CO4	L3	2.3.2
		PART-D	Q4(E)		5	CO4	L2	2.3.2
	-	Ċ	-	Which type of datatype is supposed by Verilog?	5			1.4.1, 2.3.1,
	3		Q4(F)	Define the flow of test code?	5	CO4	L2	2.3.2
ᄅ	>		Q4(G)	explain the use of sensitivity list?	J	CO4	L2	2.3.2
를	-			****** END	****	******	****	
				END				
			SAN ENGINEERING					
_								
_								
								5
	-							
				3: A				
_	-							
				9				
	-							
	-							
						nt		
	-							
	-							2
	_							
	-							
	-							
_				3				
_						*		
	-			s				i.
	3							
_	-			· · · · · · · · · · · · · · · · · · ·				
								¥
	3			2.7. 2.7	****			
	-			***	ጥጥጥ			
								*
	-							
	3						0.50	
	-							

MANAV RACHNA UNIVERSITY

SCHOOL OF ENGINEERING

DEPARTMENT OF ECE

"End Semester Examination, Dec-2023"

5			
Dice	DATE OF EXAM	12/12/2023 (I)	
DESIGN DESIGN	COURSE CODE	ECH3098-7	
B.Tech. ECE/ECE-VLSI	CREDITS		
The state of the s	E Marie Committee	1 4	
- HIG	MAX. MARKS	80	
Dr. Nitika			
NAME OF Dr. Nitika FACULTY		E Dr. Nitika	
	DIGITAL SYSTEM DÉSIGN B.Tech. ECE/ECE-VLSI 3 hrs Dr. Nitika	DÉSIGN B.Tech. ECE/ECE-VLSI CREDITS 3 hrs MAX. MARKS	

N	ote: A	ll questions are compulsory.	ATOR	and the second	A) .	0 i	***************************************
		ductions are compaisory.			hau	Pathole	
Ç	Q.NO.	QUESTIONS	MAR KS	CO ADDRE SSED	OM'S LEVE	PI	The section of
PART-A	Q1	 (A) Draw the flowchart of Digital design flow. (B) Discuss the digital design flow in detail. OR (A) Define Data type. Name different data types available in VHDL. (B) Discuss Scalar data type in detail. 	5+5	CO2	Lg	1.4.1, 2.2.2, 2.2.3	
PART-B	Q2	Discuss following VHDL statements with proper syntax and example. a) EXIT b) Unaffected value c) Assertion and report statement d) component declaration OR a) Draw the signal driver for given signal assignment statements. Process Begin Z <= 1 after 5 ns, 21 after 9 ns 6 after 10 ns, 12 after 19 ns; Z <= reject 4 ns inertial 6 after 12 ns, 20 after 17 ns, 15 after 24ns; Wait; end process; b) Sketch the output waveform for given signal assignment statement. Z <= reject 5 ns inertial A after 10ns;	2.5 each (10)	CO1		1.4.1, 2.2.2, 2.2.3	

		5ns 8ns 10ns 25ns 20ns 30ns 45ns 40ns	200			
	Q3 (A)	(A) Draw the diagram for 4:1 multiplexer. (B) Design the structural model in VHDL for 4:1 multiplexer. OR (A) Draw the diagram for Decade Counter. (B) Design Decade Counter in VHDL.	3+7	CO3	L3	1.4.1, 2.2.2, 2.2.3
	3(B)*	(A) Discuss the process of creating test benches in VHDL.(B) Provide an example test bench for a half adder.	4+6	CO3	L3	1.4.1, 2.2.2, 2.2.3
PART-C	3(C)	For the given clocked sequential circuit derive the following: (a) State Equation (b) State Table (c) State Diagram OR Design the Boolean expression in VHDL with suitable diagram and proper truth table. Y=A'B+CD	4+3+3	C 03	1.3	1.4.1, 2.2.2, 2.2.3
PA	Q4 (A)	Implement the following Boolean functions using PAL. $F1 = A'B + AC' + A'BC'$ $F2 = AC' + B'C$ OR Write short note on following. 1. FPGA 2. PLA	6+6	CO4	L4, L2	1.4.1, 2.2.2, 2.2.3
PART-D	(B)	Design 8-bit ALU in VHDL	.8	COY	L4	1.4.1, 2.2.2, 2.2.3
	Q4 (C)	 (A) Draw the diagram for Microcomputer System. (B) Design Microcomputer System in VHDL. OR (A) Draw the diagram for Memory sub-System. (B) Design Memory sub-System in VHDL. 	4+6	Соч	L2	1.4.1, 2.2.2, 2.2.3
		**************************************	*****	*****	*	

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINNERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION

"End Semester Examination, Dec-2023"

SEMESTER	5TH	DATE OF EXAM/SESSION	19/12/2023
COURSE NAME	MICROCONTROLLERS & INTERFACING	COURSE CODE	ЕСН3%В-Т (I)
PROGRAM	B.Tech ECE/ ECE-VLSI	CREDITS	4
TIME DURATION	3 HOUR	MAX. MARKS	100
NAME OF FACULTY	VIJAY KUMAR GILL	NAME OF COURSE COORDINATOR	VIJAY KUMAR O

Q	.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PART-A	Q. 1a	Explain the advantages and disadvantages of CISC and RISC architectures.	7	CO1	L2	1.4. 1, 2.2. 4
T-A	Q. 1b	Explain how the memory hierarchy contributes to overall system performance	8	CO1, CO2	L2	1.4. 1, 2.2. 4
PAR	Q. 2a	Identify and define the primary CPU registers in a PIC microcontroller.	7	CO2, CO3	L3	1.4. 1, 2.2. 4
PART-B	Q. 2b	Explain how pipelining improves the performance of a PIC microcontroller.	8	CO2, CO3	L2	1.4. 1, 2.2. 4
PART-C	Q. 3a	Explain and draw the PSW register for 8051 Microcontroller with help of some example.	5	CO2, CO3	L2	1.4. 1, 2.2. 4

Q. 3b	Build an assembly language the sum of the values 79H, F5H, E2H. Put the sum in registers R0 (low byte) and R5 (high byte).	8	CO1, CO3	L3	1.4. 1, 2.2. 4
Q. 3c	Build an assembly language program to (a) load the accumulator with the value 55H, and (b) complement the ACC 700 times	7	CO1, CO3	L3	1.4. 1, 2.2. 4
Q. 3d	Develop an assembly language program to generate Square wave of 5ms for 8051 Microcontroller. (Crystal Ferq. = 11.0592 MHz).	7	CO1, CO3	L3	1.4. 1, 2.2. 4
Q. 3f	Design an interface between a microcontroller and Matrix Keyboard for a real-time application. Also write the program code using Assembly language program.	8	CO3, CO4	L4	1.4. 1, 2.2. 4
Q. 4a	List three examples of hardware units in an Embedded System.	5 .	CO2	L1	1.4. 1, 2.2. 4
Q. 4b	Discuss the difference between operating systems for general-purpose computers and real-time operating systems (RTOS) used in Embedded Systems.	7	CO3, CO4	L3	1.4. 1, 2.2. 4
Q. 4c	Provide three real-world examples of products or applications that heavily rely on Embedded Systems.	7	CO4	L4	1.4. 1, 2.2. 4
Q. 4d	Differentiate between RAM and ROM memory.	8	CO2	L2	1.4. 1, 2.2. 4
Q. 4e	Summarize the importance of bus architecture in interfacing different components of an Embedded System.	8	CO3, CO4	L2	1.4. 1, 2.2. 4

END

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

"End Semester Examination, Dec-2023"

SEMESTER	7 TH	DATE OF EXAM/SESSION	11.12.2023
COURSE NAME	INTRODUCTION TO WIRELESS SENSOR NETWORKS	COURSE CODE	ЕСН403В
PROGRAM	B.TECH. (ECE)	CREDITS	4
TIME DURATION	3 Hrs.	MAX. MARKS	100
NAME OF FACULTY	Dr. Piyush Charan	NAME OF COURSE COORDINATOR	Dr. Piyush Charan

Note	Note: Attempt all questions.					
	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOO M'S LEVEL	PI
	Q1(A).	Define the term 'MANETs' (Mobile Ad Hoc Networks) in the context of wireless sensor networks, demonstrating your understanding of its role and significance.	2	CO1	BT2	1.2.1, 2.1.2
P	1(B).	Distinguish between MANETs and WSNs. Giving examples of each	3	CO1	BT2	2.1.2
PART-A	Q2(A).	Examine the various challenges encountered when deploying a Wireless Sensor based Network.	5	CO1	BT4	1.4.1, 2.1.2
A	2(B).	Apply your knowledge to discuss the transceiver design considerations for Wireless Sensor Networks (WSNs), covering key factors such as power consumption, communication range, and data rate, and how these considerations impact the overall performance of the network	5	CO1	ВТ3	2.2.1, 2.2.2
PAF	Q3(A).	Explain the concept of data aggregation in wireless sensor networks.	2	CO2	BT2	2.1.2, 2.3.1
PART-B	3(B).	Distinguish between the applications of WSNs in Agriculture and Healthcare sectors respectively.	3	CO2	ВТ3	1.2.1, 2.1.2

			_			
	Q4(A).	Analyze the DSDV (Destination-Sequenced Distance Vector) routing protocol, providing a comprehensive explanation. Critically discuss the various processes involved in this routing scheme, examining their interactions and evaluating their impact on network dynamics	5	CO2	BT4	1.2 2.1 2.3
	4(B).	and performance. Elucidate on the exposed node problem in WSNs? Suggest a solution to overcome it.	5	CO2	BT4	2.3
	Q5(A).	Differentiate between contention-based and schedule-based MAC protocols.	7	CO3	вт3	2.
	5(B).	Analyze the challenges faced in deploying wireless sensor networks in harsh environments.	7	CO3	BT4	2
PART-C	Q6(A).	What are power aware MAC protocols? Discuss the LEACH routing protocol in detail.	7	CO3	BT2	3
	6(B).	Discuss the SMAC (Sensor MAC) protocol in detail, demonstrating your understanding of its key features and functions in wireless	7	CO3	BT2	2
	Q7.	Compare and contrast the advantages of the BMAC (Berkeley MAC) protocol with the SMAC (Sensor MAC) protocol in wireless	7	CO3	BT4	
	Q8(A).		7	CO4	втз	
PAI	8(B).	deployed for such an application. Apply your learning to describe the architecture for sensor deployment in Precision Agriculture. Discuss the types of sensors you would use to capture relevant data, considering factors such as crop health, soil conditions, and environmental variables	7	CO4	вт3	
PART-D	Q9(A)	WSNs are prone to various kinds of attacks. Elucidate on Denial of Service and flooding		CO4	BT4	ł
	9(B).	Evaluate the ethical and privacy implications	s n 7	CO4	BT4	1
	Q10.	Distinguish between COOJA and NS2	2 7	CO4	BT	3

in which we have the state of the state of

SCHOOL OF ENGINEERING **DEPARTMENT OF ELECTRONICS & COMMUNICATION END TERM EXAMINATION (DEC-2023)** 16/12/2023 TIME DURATION: 3 COURSE CODE: DATE OF EXAM: MAX. MARKS: 100 HRS CREDIT: 4 **COURSE NAME: VLSI TESTING** ECH411 T Session ROGRAM: B.TECH ECE SEMESTER: 7TH NAME OF COURSE COORDINATOR: DR. MEENAKSH GUPT ACULTY NAME: DR. MEENAKSHI GUPTA co BLOOM'S PI **OUESTIONS** MARKS ADDRESS Q.NO. LEVEL ED State the two basic differences between combinational and 4 Q1: (A) CO1 2.1 L1 sequential circuits. Give the expressions to compute the controllability and A observability values for a T flip flop with a synchronous clear 4 (B) R CO2 L1 2.3 input. 3 (C) CO1 L2 3.2 What do you mean by BIST? A 4 (D) CO1 L2 3.2 Draw the functional diagram of the TAP. What are the two basic steps in Test Generation using Path 4 P CO₂ 5.1, 8.1 Q2: (A) Sensitization method? L3 Give the name of two algorithms that is used for pattern 4 CO1 L1 9.1 R generation in Embedded RAM's. (B) T 4 L1 State the need for Ad-hoc design in testing a digital circuit. CO₁ 5.4 (C) 3 CO₂ L3 7.2 What do you mean by Pseudo Exhaustive test? (D) (i) Write a note on the event driven simulation and what action an event driven true value simulator will take when it evaluates a zero-delay gate. 4+5 (ii)Using functional fault modeling, determine the test sets for the following: 1.A 8-line to 1-line multiplexer CO₂ L3 5.1, 8.2 03: (A) 2.A 3 to 8 decoder P A For a 2-input CMOS NAND circuit: R (i) Find a two-pattern test for each single transistor stuck-open T fault. (ii)Rearrange the eight vectors in a compact set, and show that 5+4 this set can be constructed from the single stuck-at faults tests C for the NAND gate. For each stuck- at fault of the NAND gate, find an equivalent CO1 L3 9.1, 10,1 transistor (stuck-open, stuck-short and combination) fault. (B) Explain in detail about LSSD with example and justify how it is 3+6L2 CO3 2, 8.1, 7.2 specifically used to scan paths in sensitive latches. (C) Discuss in detail about various DFT approaches used in testing a 8 CO3 L3 9.2 (D) digital circuit. Explain with circuit diagram, how double latch and single latch 2+4+3 P Q4: (A) LSSD techniques to improve testability. CO3 L2 3.2 A 8 CO3 L4 2.1 R Give comparision between testing and verification. (B) T 3+6 CO4 L4 1.1, 4.2 Draw the life cycle of VLSI testing and discuss in detail. (C)

*************** END ************

Explain transistor faults in detail. (any three types)

3*3

CO4

L2

5.2

D

(D)

			DEPAR	TMENT C	OF ECE				
	1165		ODD SEM	ESTER (DE	C-2023)			HIELE	
	RSE NAM	ME:RTL Simulation and	END TE	CREDIT:3	MAX. MARKS:80	TIME DU	IRATION:3	DATE OF E	
	GRAM: M		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SEMESTER:		Session:	I		
FAC	ULTY NA	ME: Dr. Nîtika			NAME OF COURSE CO	ORDINATOR	R: Dr. Nitika	Man	W W
(Q.NO.		QUESTIONS			MARKS	co	ELOOM'S LEVEL	PI
P A R T	1(A)	circuit design. (b) Differentiate betv OR (a) Define meta-stabi	e Machine (FSM) and expla ween Mealy and Moore ma llity in the context of digita is that contribute to meta- nce.	chines.	-	5 each (10)	CO1	L2	1.4.1, 2.2.2, 2.2.3
P A R T	Q2(A)		ode of 16 to 1 multiplexer oop statements in Verilog.	of 16 to 1 multiplexer using CASE statement. statements in Verilog.			CO2	L2	1.4.1, 2.2.2, 2.2.3
P	Q3(A)	(a) Outline the steps involved in physical verification during the design process. (b) How does physical verification contribute to ensuring the manufacturability of the final product?				5 each (10)	C03	13	1.4.1, 2.2.2, 2.2.3
A R T C	3(B)		Application-Specific Intege of the flow, including spe			5 each (10)	CO3	L2	1.4.1, 2.2.2, 2.2.3
	3(C)		onfigurability of FPGAs cor	ture of Field-Programmable Gate Arrays (FPGAs). figurability of FPGAs contribute to their versatility in		5 each (10)	CO3	L2	1.4.1, 2.2.2, 2.2.3
p	Q4(A)	process. (b) List the advantage	trast the different forms of es and challenges faced w ice of IP form impact the o	hile using d	ifferent forms of IP	7.7.6	CO4	L2	1.4.1, 2.2.2, 2.2.3
A R T D	4(B)	(b) What factors cont addressed during the OR (a) Define Design for digital circuit design.	issues associated with hig ribute to timing violations design phase? Testability (DFT) and its s lp in improving the testab	s, and how o	in the context of	5 each (10)	CO4	L2	1.4.1, 2.2.2, 2.2.3

MANAV RACHNA UNIVERSITY SCHOOL OF ENGINNERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION

"End Semester Examination, Dec-2023"

SEMESTER	1st	DATE OF EXAM/SESSION	14/12/2023 (I)
COURSE - NAME	MICROCONTROLLERS AND PROGRAMMABLE DIGITAL SIGNAL PROCESSORS	COURSE CODE	ЕСН502В-Т
PROGRAM	M.Tech ECE	CREDITS	3
TIME DURATION	3 HOUR	MAX. MARKS	80
NAME OF FACULTY	VIJAY KUMAR GILL	NAME OF COURSE COORDINATOR	VIJAY KUMAR GILL Man Bullal

1000						
Ç	Q.NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM'S LEVEL	PI
PA	Q. A1	How Stack is implemented in Cortex-M3?	5	CO1	B2	1.1 1, 1.3
PART-A	Q. A2	Outline the reset sequence of the ARM Cortex-M3 processor.	5	CO1	B2	1.1 1, 1.3. 1
PART-B	Q. B1	Explain following instructions with examples: i) CLZ ii) MVN	5	CO2	B1	1.1. 1, 1.3. 1
T-B	Q. B2	How can system designers minimize interrupt latency for critical applications?	5	CO2	В3	1.1. 1, 1.3. 1
PART-C	Q. C1	Discuss the efficiency and limitations of barrel shifters in the context of P-DSP architectures.	5+5	CO3	B1	1.1. 1, 1.3. 1

		1			26	
	Q. C2	What is multi-port memory, and how is it utilized in P-DSP processors? List few examples of scenarios where multi-port memory is beneficial in DSP applications.		C03	В3	1.1. 1, 1.3. 1
PART-D	Q. D1	Explain the addressing modes for TMS320C6000 series processor? Also list few examples for the same	9+6	CO4	B2	1.1. 1, 1.3. 1
T-D	Q. D2	Illustrate the functional block diagram of TMS320C25 and also list few limitation of TMS320C25?	8+7	CO4	В3	1.1. 1, 1.3. 1

END

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	16/12/2023 (I)
SUBJECT NAME	VLSI Signal Processing	SUBJECT CODE	ECH505B
BRANCH	ECE	SESSION	با الم
TIME	8.30-11.30	MAX. MARKS	80
PROGRAM	M.TECH ECE	CREDITS	
NAME OF FACULTY	BHANU PRATAP CHAUDHARY	NAME OF COURSE COORDINATOR	BHANU PRATAP CHAUDHARY

Note: All questions are compulsory.

	NO.	QUESTIONS	MARKS	CO ADDRESSE D	BLOOM' S LEVEL	Pl
P	1(A)	Explain the fundamental differences between time-domain and frequency- domain DSP algorithms. Provide examples of applications where each type is most suitable.	5	CO1	LI	1.4.1,2.2.1, 2.2.2
PART-A	1(B)	Differentiate between loop-bound and iteration-bound in the context of DSP algorithms. Provide an example to illustrate the concept.	5	CO1	L2	1.4.1,2.1.1
	1(C)	Discuss the significance and techniques involved in retiming for optimizing DSP algorithms.	5	CO1	L2	1.4.1,2.1.1
PA	2(A)	Explain the process of round-off noise calculation in lattice filters.	5	CO2	L3	1.3.1,1.4.1
PART-B	2(B)	Given a space representation containing delays, outline the steps for designing a systolic array.	5	CO2	L3	1.3.1,1.4.1
	2(C)	Analyze the basic structure and functioning of a Digital Lattice filter.	5	CO2	L4	3.1.1,3.4.1
P/	Q3(A)			CO3	L4	
PART-C	Q3(B)	What are the advantages and challenges	6	CO3	L2	2.1.1,2.2.2, 2.4.1

		= a grant and the immedian the				2.2.2,2.4.1,
		Define Clock Skew and its impact on the performance of bit-level pipelined VLSI			L3	2.4.2
	Q3(C)	designs. Discuss the challenges associated	6	CO3		
	C -(-)	with Clock Distribution in such designs.				3.1.1,3.4.1
		Evaluate the trade-offs between scaling and	*		L4	3.1.1,3.4.1
		power consumption in digital signal	6	CO3	<i>=</i>	
	Q3(D)	processing. Choose a real-world application where				1.4.1,2.2.1,
		programmable DSP processors are				2.2.2
		extensively used. Explain the significance	6	CO4	L1	
		of DSP processors in optimizing			o.	
	Q4(A)	performance for the chosen application.				2.2.2,2.4.1,
		Discuss how DSP processors are integrated into larger systems for signal processing		110		2.4.2
		applications. Highlight any challenges or	6	CO4		
PA		considerations involved in integrating DSP		-	L3	
PART-D		processors into complex systems.				
I	Q4(B)	DCD				3.1.1,3.4.1
U	SESS OF	Identify a recent innovation in DSP processor technology. Discuss its potential	6	CO4		
		impact on the field of digital signal				
HE PA	BAF	processing.			L3	
	Q4(C)			*		3.1.1,3.4.1
		Analyze the role of DSP processors in	7		L4	3.1.1,3.4.1
		optimizing signal processing tasks for		CO4	Di	
	Q4(D)	mobile and wireless communication.			Labelale	
		***** END	****	*****	****	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING ODD SEMESTER (DEC-2023)

END TERM EXAMINATION

COURSE NAME:CAD for DIGITAL SYSTEM

COURSE CODE:ECH509B

CREDIT:3

MAX. MARKS:80 Session - I TIME DURATION:3hrs DATE OF EXAM:19.12.23

PROGRAM: (M. Tech.) - ELECTRONICS & COMMUNICATION ENGINEERING WITH

SEMESTER: I

Many Pathal

CU	ILTY NA	ME:Dr.Shruti Vashist	NAME OF COURSE COORI	DINATOF	R:Dr.Shrut	i Vashist	
Q	1(B) What is the significance of Design Rules is 1(C) Describe the CMOS Fabrication Process in 1(D) Express the SIA Roadmap in the context of 1(E) Signify the importance of lithography in 1 1(F) Discuss the importance of layout specificates design 1(G) Explain the challenges and limitations assist structures in VLSI design. Describe the role of computational completion in the challenges and limitations assist structures in VLSI design. Rernighan-Lin Algorithm used for in completion of the challenges and limitations assist structures in VLSI design.		MARKS	CO ADDRESS ED	BLOOM'S LEVEL	PI	
	1(A)	Explain the concept of Die Attachment Styles		2	CO1	BT2	2.1.2
	1(B)	What is the significance of Design Rules in V	LSI layout	2	CO1	втз	2.1.2
P A R	1(C)	Describe the CMOS Fabrication Process in VI	LSI	2	CO1	BT1	3.1.1
	1(D)	Express the SIA Roadmap in the context of V	LSI design	2	CO2	вт3	3.2.2
A	1(E)	Signify the importance of lithography in VLS	SI fabrication	2 -	CO1	вт3	3.2.1
	1(F)	Discuss the importance of layout specification languages in VLSI design		2	CO2	вт3	3.3.1
	1(G)	Explain the challenges and limitations assoc structures in VLSI design.	iated with existing data	3	CO2	BT4	3.1.1
P A	Q2(A)	Describe the role of computational complex how it influences the choice of algorithms	ity in VLSI design and	7	CO2,CO3	BT4	3.2.1
R		Kernighan-Lin Algorithm used for in combin Justify	national optimization-	3	CO3	вт3	3.3.1
В	Q3(A)	Analyse the role of Simulated Annealing in fl	loorplanning algorithms	5	CO1	вт3	4.2.1
p	Q4(A)	Explain the significance of Simulated Evolution planning and how they contribute to overconchallenges.		7	CO2	втз	4.3.1
A R	Q4(B)	How does the Sequence-Pair Technique contagorithms		5	соз	BT2	3.1.1
T		Explore the significance of the Resistive Net- algorithm in routing and how it addresses cl signal integrity	-	7	соз	втз	3.2.1
	Q5(B)	In VHDL, express the need for simulation	×	6	CO2	вт3	3.3.1
P	Q6(A)	Create the process of logic synthesis and ex the design flow of digital circuits	press its significance in	7	соз	BT5	3.2.1
A R	Q6(B)	Provide a brief overview of Finite State Mac mention their applications	hines (FSMs) and	5	соз	ВТ2	3.3.1
T -	Q7(A)	Describe the process of logic synthesis and i design flow of digital circuits.	ts significance in the	8.	соз	втз	3.2.1
D	Q7(B)	Differentiate between combinational and se Provide an example of each	quential circuits.	5	CO3	ВТ2	6.1.1

MANAV RACHNA UNIVERSITY

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

"End Semester Examination, Dec-2023"

SEMESTER	I	DATE OF EXAM	21/12/2-23 (I)
COURSE .	RESEARCH METHODOLOGY & IPR	COURSE CODE	ECS510B
PROGRAM	M.TECH ECE	CREDITS	2
TIME DURATION	37 = 1.30 hrs.	MAX. MARKS	50
NAME OF FACULTY	LOKESH BHARDWAJ	NAME OF COURSE COORDINATOR	LOKESH BHARDWAJ

Note: Part 4 is short answer type. Part B- Questions will be of descriptive type or humerical.

Note:	Part A is	s short answer type. Part B- Questions will b	e of aeseri	pure type of		
Q.	NO.	QUESTIONS	MARKS	CO ADDRESSED	BLOOM' S LEVEL	PI
	1(A)	Explain briefly the concept of intellectual property infringement.	2	CO1	L1	1.2.1
T	1(B)	What is patent harmonization?	2	CO1	L2	1.2.1
PART-A	1(C)	What are trends in patent information dissemination?	2	CO3	L2	1.2.1
A-	1(D)	Explain briefly the impact of digitalization on the administration of patent systems.	2	CO2	L1	1.2.1
	1(E)	What is the importance of using a standardized citation style in a research proposal?	2 6	CO4 CO1	L2 L2	1.3.1
		What is the fundamental purpose of patents, designs, trade, and copyright in protecting intellectual property?		G01		1
PART-B	Q2(A) Q2(B)	Explain the step-by-step process of obtaining a patent for a new technological innovation.	4	CO1.	L1	1.1. 1, 1.3.1 1.3.1
В	Q3(A)	Explore the challenges and debates surrounding the scope of patent rights in emerging technologies like biotechnology and	6	CO2	L4	1.4.1, 2.3.1, 3.1.1

	Examine the challenges and opportunities associated with the international transfer of	4	CO2	L4	1.3.1, 2.3.1
3(B)	patented technologies. Discuss the role of patent databases in		563 *		2.3.1,
Q4(A)	conducting prior art searches and assessing the novelty of inventions.	5	C03	L2	3.2.1
4(B)	Outline the typical structure and format of a research proposal, including any specific guidelines or standards commonly followed	10	CO3	L4	2.3.1, 2.3.2
Q5	Explain how identifying gaps in existing knowledge can serve as a source for formulating research problems.	5	C04	L1, L2	1.4.1

END

		DEPARTMENT OF	ELECTRO	ONICS & COMMUN	ICATION			
END TERM EXAMINATION (DEC					TIME DURATION: 3		11/12/2023 DATE OF EXAM:	
IO T	ECHNOLO	GY ECH602B T	CREDIT: 3 MAX. MARKS: 100 SEMESTER: 3RD		incs		Session II End	
	AM: M.TEG		NAME OF COURSE COO		COORDINATO	R: DR. M	1	
	Y NAME:	DR. MEENAKSHI GUPTA NAME OF COURSE CO		design of the	CO ADDRES SED	BLOOM'S LEVEL	PI	
P A R T	Q1: (A)	Define Nanotechnology.			3	CO1	L1	1
	(B)	Classify the different modes of Nanomaterials.			4	CO1	L4	3.
	(C)	Identify the challenges faced by Nanotechnology.			4	CO1	L3	3.
	(D)	List out the Applications of Nanotechnology in electronics.			4	CO2	L1	1
P A R T	Q2: (A)	Write short note on Carbon nanotube.			4	CO2	L2	4
	(B)	Illustrate the applications of nano r	naterials?		4	CO1	L2	9
	(C)	Identify the advantages of carbon nano technology.			4	CO2	L3	5
	(D)	What are opto elctronics properties?			3	CO1	L1	7
P A R T - C	02. (4	Explain X-Ray Diffraction (XRD).			. 8	C03	L2	(
	Q3: (A	Discuss the Classification of Nanor suitable examples.	materials in	detail. Give the	5+4	C03	L2 -	
	(B)	Discuss Bottom up approach of sy two types)	nthesis of N	Vanomaterial. (Any	4+5	CO4	L2	1
	(D)	List out applications of Nanomate	rials and ne	eatly explain them.	3+6	CO4	L1	
		Describe the crystal planes and cr	ystal direct	tions in detail.	4+5	CO3	L3	
	(B)	Discuss the four applications of na			3+2+2+3	CO3	L2	1.1,
	(C)		n between homogenous and heterogenous nucleatio		4.5*2	CO4	L4	
		Write a short note on growth of s				8 03	L2	